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The Nineth International Conference on Computational Mathematics and Engineering 

Sciences (CMES-2025) will be held in Dicle University from 17- to 19 May 2025 in Dicle, 

Türkiye. It provides an ideal academic platform for researchers and professionals to discuss recent 

developments in both theoretical, applied mathematics and engineering sciences. This event also aims 

to initiate interactions among researchers in the field of computational mathematics and their 

applications in science and engineering, to present recent developments in these areas, and to share 

the computational experiences of our invited speakers and participants. 
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MESSAGE FROM THE GENERAL CHAIRS 

          

Dear Conference Attendees, 
We are honored to welcome you to the Nineth International Conference on Computational 

Mathematics and Engineering Sciences (CMES-2025) at Dicle University from 17 to 19 May 2025 
in Diyarbakır City, Türkiye.  
             CMES, founded in 2016 at Faculty of Science and Techniques Errachidia Moulay Ismail 
University Morocco is an annual intarnational conference, which was very successful in the past years 
by providing opportunities to the participants in sharing their knowledge and informations and 
promoting excellent networking among different international universities. This year, the conference 
includes 200 extended abstracts, several submissions were received in response to the call for papers, 
selected by the Program Committee. The program features keynote talks by distinguished speakers 
such as:  
Dumitru Baleanu from Lebanese American University, Beirut, Lebanon; Baver Okutmustur from 
Middle East Technical University, Türkiye; Mehrdad Lakestani from Tabriz University, Iran, 
Ekrem Savas from Usak University, Türkiye; Ozlem Defterli from Çankaya University, Türkiye; 
Sedaghat Shahmorad from Tabriz University, Iran. The conference also comprises contributed 
sessions, posters sessions and various research highlights. 
               We would like to thank the Program Committee members and external reviewers for 
volunteering their time to review and discuss submitted abstracts. We would like to extend special 
thanks to the Honorary, Scientific and Organizing Committees for their efforts in making CMES-
2025 a successful event. We would like to thank all the authors for presenting their research studies 
during our conference. We are grateful to DUBAP(ZGEF.25.003) for research funds. We hope that 
you will find CMES-2025 interesting and intellectually stimulating, and that you will enjoy meeting 
and interacting with researchers around the world. 

. 
Hasan Bulut,  

Firat University, Elazig, Türkiye. 

Zakia Hammouch,  

ENS Meknes, Moulay Ismail University Morocco  

Thu Dau Mot University, Binh Duong Province, Vietnam  

China Medical University Hospital Taichung 40402, Taiwan. 
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Control Theory, 

Game Theory, 

Applied Mathematics, 

Financial Mathematics, 

Artificial Intelligence, 

Education Sciences, 

Engineering Sciences, 

Computer Science, 

Information Technology, 

Geometry and Its Applications, 

Analysis and Its Applications, 

Statistics and Its Applications, 

Algebra and Its Applications, 

Topology and Its Application, 

Chaos and Dynamical Systems, 

Cryptography and its Applications, 

Fractional Calculus and Applications, 

Economics and Econometric Studies, 

Electrical and Electronic Engineering, 

Defense industry and applications, 
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Mathematics Education and Its Applications, 

Numerical Methods and Scientific 

Programming, 
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Differential Equations, 
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SCIENTIFIC COMMITTEE 
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PROCEEDINGS 
Full version of submitted papers will be published in Special Volumes of reputed journals. Procedure, 
Guidelines and Checklist for the preparation and submission of papers to the Proceedings of CMES-
2025 can be found in the journals websites. The journals in which selected and peer-reviewed full papers 
of CMES-2025 will be published are as follows: 
 
1. BOOK OF ABSTRACTS [Free of charge]  
If Authors submit ABSTRACT TEXTS, then, after 
getting referees evaluations for these abstracts, they 
will be published in ABSTRACT PROCEEDING 
BOOK of CMES-2025. For FULL TEXT PAPERS, 
Authors have to submit their FULL TEXT PAPERS 
online via submission system of CMES-2025. These 
FULL TEXT PAPERS will be published in FULL 
TEXT PROCEEDING BOOK of CMES-2025 after 
getting at least two positive reports. 
2. CONFERENCE PROCEEDINGS [Free of 

charge] 
At the beginning, if Authors submit FULL TEXT 
PAPERS, then, after getting at least two positive 
referee reports, FULL TEXT PAPERS will be 
published in FULL TEXT PROCEEDING BOOK of 
CMES-2025 with ISBN:77733 number. Therefore, 
Abstracts of these FULL TEXT PAPERS will NOT be 
published in ABSTRACT PROCEEDING BOOK of 
CMES-2025. 
 
3. FRACTAL AND FRACTIONAL JOURNAL [SCI-E],  
Selected papers from CMES-2025 will be published 
in a special issue dedicated to the Conference 
entitled “Feature Papers for Mathematical Physics 

Section”. 
https://www.mdpi.com/journal/fractalfract/special_iss
ues/1TAP5BBZ45  
This journal is indexed by SCI-E. 
 
4. PROCEEDINGS OF THE INSTITUTE OF 
MATHEMATICS AND MECHANICS [E-SCI] 
Selected papers from CMES-2025 will be published 
by https://proc.imm.az/special/ 
 
This journal is indexed by E-SCI. 
 
5.TURKISH JOURNAL OF SCIENCE, [FREE] 
Participants of CMES 2025 can submit their good 
quality papers to Turkish Journal of Science. After 
the peer review process, the papers will be published 
at TJOS. The authors must write “CMES 2025” as 
comments to the editor. 
(Editor in Chief: Dr. Ahmet Ocak AKDEMİR) For on-
line submission: https://dergipark.org.tr/tr/pub/tjos  
 
6.TURKISH JOURNAL OF INEQUALITIES, [FREE] 
“Participants of CMES 2025 can submit their good 
quality papers to Turkish Journal of Inequalities. 
Selected papers will be published at TJI after the 



14 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

peer review process. The participants can send their 
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(Editor in Chief: Prof. Dr. Erhan SET) 
http://tjinequality.com/  
 
7. MATHEMATICS IN NATURAL SCIENCE (MNS) 
Authors can submit their full text paper directly to the 
journal by using the following link  
https://www.isr-publications.com/mns  
 
8. MATHEMATICS IN ENGINEERING, SCIENCE 
AND AEROSPACE (MESA), [FREE, SCOPUS] 
“Selected papers will be published after peer review 
in the Journal of Mathematics in Engineering, 
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(Editor in Chief: Prof. Seenith Sivasundaram) 
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https://mmnsa.org/index.php/mmnsa/special_issues/
SI-CMES2023    

 
11. SYMMETRY [SCI-E] ;                                                                   
SPECIAL ISSUE "ADVANCES IN MATRIX 
TRANSFORMATIONS, OPERATORS AND 
SYMMETRY" 
Authors can submit their full text paper directly to the 
journal by using the following link  
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https://dergipark.org.tr/tr/pub/yyufbed 
 
13. PEDAGOGICAL PERSPECTIVE (PEDPER) 
Pedagogical Perspective (PedPer) is an 
international, double blind reviwing, non-profit, 
professional scientific journal. PedPer is a journal 
that accepts manuscripts related to pedagogy and 
education. 
http://pedagogicalperspective.com/ 
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Abstract  

Fractional Calculus deals with the study of so-called fractional order integral and 

derivative operators over real or complex domains, and their applications. In this talk I will 

discuss the modified ABC operator and I will explain the related properties and its real world 

applications. 

Keywords:  Fractional calculus;General kernel; Modified ABC operator. 
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Abstract  
This work presents comparative numerical study of shock solutions in classical and relativistic a 

Burgers models using two finite volume-based adaptive mesh refinement (AMR) strategies: h-adaptivity 
(local grid refinement) and r-adaptivity (mesh redistribution). The h-method dynamically adjusts 
resolution by adding/removing cells in shock regions, while the r-method maintains a fixed cell count 
but optimally redistributes points to sharpen shock resolution. We compare both approaches in terms of 
accuracy and efficiency, demonstrating their effectiveness for handling shocks and nonlinear waves in 
both classical and relativistic cases. This work is based on the joint work [4]. 

Keywords: Adaptive grid; h-refinement; r-refinement; Monitor function; Finite volume 
method; Relativistic Burgers equation 
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Abstract: 

Mathematics has always existed since the first steps of culturel history of 
the living creatures called human beings. It has always been a part of culture with 
numbers,  figures,  characteristics and with their applications according to the 
technical levels of the day. In this study, a general knowledge will be given 
concerning how math began and what phases it  went  through up to now. In 
getting the data, books and articles dealing with the issue have been studied. The 
findings we have show that it is not possible to say exactly where and when 
mathematics began. However, we can say, on the basis of findings, that math 
began in Epypt and Mesopotamia between 3000-2000 B.C. and then spread to 
other countries. 
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Abstract  

Systems biology addresses the challenge of understanding living systems in their entirety, 
as opposed to concentrating on individual biological elements.One approach to describing 
biological systems is through networks which are the graphical representations in which nodes 
denote entities of the system and edges signify the relationships between them.Given that the 
underlying structure of many networks remains partially or entirely unknown, a key objective 
of systems biology is to predict the complex and dynamic interactions among genes.This is  
called  network inference (NI) that focuses on deducing network structures by leveraging high-
throughput data in combination with reverse engineering methods. A fundamental challenge in 
network inference is the high dimensionality—often involving thousands of genes—contrasted 
with the relatively small number of available samples. Consequently, gene regulatory network 
(GRN) inference is inherently under-determined [1,2]. In this study, a time-series gene 
expression data-set derived from a micro-array chip experiment involving a model eukaryotic 
organism is used for illustrative purposes. The dataset’s key characteristics are analyzed to gain 
insights into the structure and behavior of the underlying biological process. Subsequently, the 
temporal dynamics of the system are modeled in a discrete-time framework, employing 
advanced mathematical modeling techniques to capture the complexity and regulatory 
mechanisms of gene interactions [3,4]. 

Keywords: Network inference, Mathematical modelling, Data processing. 
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Abstract 

Some efficient numerical methods such as block-by-block, fuzzy transform and interpolation based 

methods are studied for solving linear and nonlinear single term and multi-term frac- tional 

differential equations (MFDEs). The approaches involve converting the given linear and nonlinear 

MFDEs with some initial conditions into equivalent Volterra integral equa- tions (VIE), and 

applying the mentioned numerical approaches to the obtained VIES. Error bounds and convergence 

theorems are discussed for each case, separately. Finally, illustra- tive and comparative examples are 

provided to demonstrate the applications of the proposed methods and verify the theoretical results. 

Keywords: Multi-term fractional initial value problem, Block-by-block method, Fuzzy 

tarnsform, Nonlinear Volterra integral equation, weak singularity. 
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ABSTRACT 
In this paper, we solve a singularly perturbed initial value problem with delay by using c B-

Spline wavelets. The properties of these functions are provided, and by employing the operational 
matrix of differentiation, a numerical method is genereted over some subintervals that reformulates 
the problem into a system of algebraic equations. This system can be solved to find the approximate 
solution. Numerical results demonstrate the efficiency of the method. 

Keywords: Singularly perturbed problem; B-Spline wavelets; Delay differential equation. 
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 Abstract 

 Gaussian number means representation as Complex numbers. Our goal in this work is 

to give the Gaussian Pell numbers by using  permanent and determinant of some tridiagonal 

matrices.  

Keywords: Permanent, Gaussian pell number, Tridiagonal matrix. 

 Introduction  

The Fibonacci, Lucas, Pell and Pell-Lucas numbers have received much interest in 

recent years and studied by a wide range of researchers in a variety of branches of mathematics, 

including linear algebra, applied mathematics, and calculus. The investigation of Gaussian 

numbers is a research topic of great interest. Gaussian numbers are complex numbers 𝑧𝑧 = 𝑎𝑎 +
𝑖𝑖𝑖𝑖, 𝑎𝑎, 𝑏𝑏 ∈ ℤ were investigated by Gauss in 1932 and the set of these numbers is denoted by 

ℤ[𝑖𝑖]. Furthermore, the study of Gaussian numbers is a very interesting academic field, and 

various research have been done in this area. In 1963, Horadam [1] introduced complex 

Fibonacci numbers and named them Gaussian Fibonacci numbers. In 1965, Jordan [2] 

considered two complex number sequences and extended some of the characteristics associated 

with usual Fibonacci sequences.  

The Generalized Fibonacci sequences 𝑈𝑈𝑛𝑛(𝑝𝑝, 𝑞𝑞, 𝑎𝑎, 𝑏𝑏) are defined as follows 

𝑈𝑈𝑛𝑛+1 = 𝑝𝑝𝑈𝑈𝑛𝑛 + 𝑞𝑞𝑞𝑞𝑛𝑛−1       𝑈𝑈0 = 0,  𝑈𝑈1 = 1 
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where 𝑝𝑝 and 𝑞𝑞  are nonzero real numbers and 𝑛𝑛 ≥ 1. If  𝑝𝑝 = 2, 𝑞𝑞 = 1 is taken in the 

Generalized Fibonacci sequences 𝑈𝑈𝑛𝑛(𝑝𝑝, 𝑞𝑞, 𝑎𝑎, 𝑏𝑏), then the Pell sequences  
{ 𝑃𝑃𝑛𝑛 } = { 1, 2, 5, 12, … } 

is obtained [1] [3]. 

The Generalized Gaussian Fibonacci sequences 𝑈𝑈𝑛𝑛(𝑝𝑝, 𝑞𝑞, 𝑎𝑎, 𝑏𝑏) are defined as follows 

𝐺𝐺𝐺𝐺𝑛𝑛+1 = 𝑝𝑝𝐺𝐺𝐺𝐺𝑛𝑛 + 𝑞𝑞𝑞𝑞𝑞𝑞𝑛𝑛−1       𝐺𝐺𝐺𝐺0 = 𝑎𝑎,  𝐺𝐺𝐺𝐺1 = 𝑏𝑏 

Where 𝑎𝑎 and 𝑏𝑏  are initial values [4]..  

Definition 1: The Gaussian Pell numbers {𝐺𝐺𝐺𝐺𝑛𝑛}𝑛𝑛≥0  are determined by: 

𝐺𝐺𝐺𝐺𝑛𝑛 = 2𝐺𝐺𝐺𝐺𝑛𝑛−1 + 𝐺𝐺𝐺𝐺𝑛𝑛−2 

With initial conditions 𝐺𝐺𝐺𝐺0 = 𝑖𝑖, 𝐺𝐺𝐺𝐺1 = 1  

If  𝑝𝑝 = 2, 𝑞𝑞 = 1, 𝑎𝑎 = 𝑖𝑖, 𝑏𝑏 = 1 is taken ın the generalized Gaussian Fibonacci sequences 

𝑈𝑈𝑛𝑛(𝑝𝑝, 𝑞𝑞, 𝑎𝑎, 𝑏𝑏), then the Gaussian Pell sequences  

{ 𝐺𝐺𝐺𝐺𝑛𝑛 } = {𝑖𝑖, 1, 2 + 𝑖𝑖, 5 + 2𝑖𝑖, 12 + 5𝑖𝑖, … } 

is obtained [4]. 

Let 𝐴𝐴𝑛𝑛 = [𝑎𝑎𝑖𝑖𝑖𝑖] be an 𝑛𝑛𝑛𝑛𝑛𝑛 matrix and 𝑆𝑆𝑛𝑛 is a symetric group of permutations over the 

set {1,2, … 𝑛𝑛}. The determinant of 𝐴𝐴 matrix defined by 

det 𝐴𝐴 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)
𝛼𝛼∈𝑆𝑆𝑛𝑛

∏ 𝑎𝑎𝑖𝑖𝛼𝛼(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

where the sum ranges over all the permutations of the integers 1, 2, . . . , 𝑛𝑛. It can be denoted by  

𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼) = ±1 the signature of 𝛼𝛼, equal to +1 if 𝛼𝛼 is the product an even number of 

transposition and −1 otherwise. The permanent of 𝐴𝐴 matrix is defined by 

per 𝐴𝐴 = ∑ ∏ 𝑎𝑎𝑖𝑖𝛼𝛼(𝑖𝑖)

𝑛𝑛

𝑖𝑖=1𝛼𝛼∈𝑆𝑆𝑛𝑛

 

where the summation extends over all permutations 𝛼𝛼 of the symmetric group 𝑆𝑆𝑛𝑛 [5].  

Main Results 

The general formula for the 𝑛𝑛-th Gaussian Pell numbers is given by the following theorem.. 

Theorem 1:For integer  𝑛𝑛 ≥ 0 where 𝐺𝐺𝐺𝐺0 = 𝑖𝑖  
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𝐺𝐺𝐺𝐺𝑛𝑛+1 = ∑2𝑛𝑛−2𝑘𝑘 (𝑛𝑛 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛2⌋

𝑘𝑘=0
+  𝑖𝑖 ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − 1 − 𝑘𝑘𝑘𝑘 )

⌊𝑛𝑛−12 ⌋

𝑘𝑘=0
                      

Proof: The proof can be completed using the inductive method. Let 𝑛𝑛 ≥ 0 be an integer. For  

𝑛𝑛 < 2 where ⌊𝑛𝑛2⌋ = 0  

𝐺𝐺𝐺𝐺1 = 1 ve 𝐺𝐺𝐺𝐺2 = 2 + 𝑖𝑖 

Let 𝑛𝑛 ≥ 2 and equality (2) be true for 𝑛𝑛. In  this case it must be shown that it is true for 𝑛𝑛 + 1  

From definition 1 and the inductive hypothesis  

𝐺𝐺𝐺𝐺𝑛𝑛+2 = 2𝐺𝐺𝐺𝐺𝑛𝑛+1 + 𝐺𝐺𝐺𝐺𝑛𝑛 

               = ∑2𝑛𝑛+1−2𝑘𝑘 (𝑛𝑛 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛2⌋

𝑘𝑘=0
+  𝑖𝑖 ∑ 2𝑛𝑛−2𝑘𝑘 (𝑛𝑛 − 1 − 𝑘𝑘𝑘𝑘 )

⌊𝑛𝑛−12 ⌋

𝑘𝑘=0
 

                + ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − 1 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛−12 ⌋

𝑘𝑘=0
+  𝑖𝑖 ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 2 − 𝑘𝑘𝑘𝑘 )

⌊𝑛𝑛−22 ⌋

𝑘𝑘=0
 

              = 2𝑛𝑛+1 (𝑛𝑛0) +∑2𝑛𝑛+1−2𝑘𝑘 (𝑛𝑛 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛2⌋

𝑘𝑘=1
+ ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − 1 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛−12 ⌋

𝑘𝑘=0
 

                   +𝑖𝑖

(

 2𝑛𝑛 (𝑛𝑛 − 10 ) + ∑ 2𝑛𝑛−2𝑘𝑘 (𝑛𝑛 − 1 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛−12 ⌋

𝑘𝑘=1
+ ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 2 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛−22 ⌋

𝑘𝑘=0 )

  

              = 2𝑛𝑛+1 + ∑ 2𝑛𝑛+1−2(𝑘𝑘+1) (𝑛𝑛 − (𝑘𝑘 + 1)𝑘𝑘 + 1 )
⌊𝑛𝑛2⌋−1

𝑘𝑘=0
+ ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − (𝑘𝑘 + 1)𝑘𝑘 )
⌊𝑛𝑛−12 ⌋

𝑘𝑘=0
 

                   +𝑖𝑖

(

 2𝑛𝑛 + ∑ 2𝑛𝑛−2(𝑘𝑘+1) (𝑛𝑛 − 1 − (𝑘𝑘 + 1)𝑘𝑘 + 1 )
⌊𝑛𝑛−12 ⌋−1

𝑘𝑘=0
+ ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 2 − 𝑘𝑘𝑘𝑘 )
⌊𝑛𝑛−22 ⌋

𝑘𝑘=0 )

  

              = 2𝑛𝑛+1 + ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − (𝑘𝑘 + 1)𝑘𝑘 + 1 )
⌊𝑛𝑛2⌋−1

𝑘𝑘=0
+ ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − (𝑘𝑘 + 1)𝑘𝑘 )
⌊𝑛𝑛−12 ⌋

𝑘𝑘=0
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                   +𝑖𝑖

(

 2𝑛𝑛 + ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 2 − 𝑘𝑘
𝑘𝑘 + 1 )

⌊𝑛𝑛−1
2 ⌋−1

𝑘𝑘=0
+ ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 2 − 𝑘𝑘

𝑘𝑘 )
⌊𝑛𝑛−2

2 ⌋

𝑘𝑘=0 )

  

              = 2𝑛𝑛+1 + ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − (𝑘𝑘 + 1) + 1
𝑘𝑘 + 1 )

⌊𝑛𝑛−1
2 ⌋

𝑘𝑘=0
 

                   +𝑖𝑖

(

 2𝑛𝑛 + ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 1 − 𝑘𝑘
𝑘𝑘 + 1 )

⌊𝑛𝑛−2
2 ⌋

𝑘𝑘=0 )

  

              = 2𝑛𝑛+1 + ∑ 2𝑛𝑛+1−2𝑘𝑘 (𝑛𝑛 + 1 − 𝑘𝑘
𝑘𝑘 )

⌊𝑛𝑛+1
2 ⌋

𝑘𝑘=1
 

                   +𝑖𝑖 (2𝑛𝑛 + ∑ 2𝑛𝑛−2𝑘𝑘 (𝑛𝑛 − 𝑘𝑘
𝑘𝑘 )

⌊𝑛𝑛2⌋

𝑘𝑘=1
)𝑔𝑔 

              = ∑ 2𝑛𝑛+1−2𝑘𝑘 (𝑛𝑛 + 1 − 𝑘𝑘
𝑘𝑘 )

⌊𝑛𝑛+1
2 ⌋

𝑘𝑘=0
+ 𝑖𝑖 ∑ 2𝑛𝑛−2𝑘𝑘 (𝑛𝑛 − 𝑘𝑘

𝑘𝑘 )
⌊𝑛𝑛2⌋

𝑘𝑘=0
 

And the desired result is obtained. Thus, the proof is completed.  

In the proof of Theorem  is taken into consideration 𝑥𝑥 < 𝑦𝑦 ⇒ (𝑥𝑥𝑦𝑦) = 0, 𝑥𝑥 < 0 ⇒ (𝑥𝑥𝑦𝑦) = 0  and 

(𝑥𝑥0) = 1.  

In this section, we define some tridiagonal matrix and than show that the permanent 

and determinant of this matrices equal to the Gaussian Pell numbers. 

Definition 2: We define a 𝑛𝑛𝑛𝑛𝑛𝑛 tridiagonal  matrix 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖) with 𝑎𝑎11 = 2𝑖𝑖 − 1, 𝑖𝑖 ≠ 1, 𝑎𝑎𝑖𝑖𝑖𝑖 =

2𝑖𝑖 𝑎𝑎𝑖𝑖+1,𝑖𝑖 = 𝑎𝑎𝑖𝑖,𝑖𝑖+1 = 1 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 0 otherwise. That is, 

𝐴𝐴 =

[
 
 
 
 
 
 2𝑖𝑖 − 1 1 0

1 2𝑖𝑖 1
0 1 2𝑖𝑖

0 ⋯
0 ⋯
1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 1
1 2𝑖𝑖]

 
 
 
 
 
 

𝑛𝑛𝑛𝑛𝑛𝑛
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                   +𝑖𝑖

(

 2𝑛𝑛 + ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 2 − 𝑘𝑘
𝑘𝑘 + 1 )

⌊𝑛𝑛−1
2 ⌋−1

𝑘𝑘=0
+ ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 2 − 𝑘𝑘

𝑘𝑘 )
⌊𝑛𝑛−2

2 ⌋

𝑘𝑘=0 )

  

              = 2𝑛𝑛+1 + ∑ 2𝑛𝑛−1−2𝑘𝑘 (𝑛𝑛 − (𝑘𝑘 + 1) + 1
𝑘𝑘 + 1 )

⌊𝑛𝑛−1
2 ⌋

𝑘𝑘=0
 

                   +𝑖𝑖

(

 2𝑛𝑛 + ∑ 2𝑛𝑛−2−2𝑘𝑘 (𝑛𝑛 − 1 − 𝑘𝑘
𝑘𝑘 + 1 )

⌊𝑛𝑛−2
2 ⌋

𝑘𝑘=0 )

  

              = 2𝑛𝑛+1 + ∑ 2𝑛𝑛+1−2𝑘𝑘 (𝑛𝑛 + 1 − 𝑘𝑘
𝑘𝑘 )

⌊𝑛𝑛+1
2 ⌋

𝑘𝑘=1
 

                   +𝑖𝑖 (2𝑛𝑛 + ∑ 2𝑛𝑛−2𝑘𝑘 (𝑛𝑛 − 𝑘𝑘
𝑘𝑘 )

⌊𝑛𝑛2⌋

𝑘𝑘=1
)𝑔𝑔 

              = ∑ 2𝑛𝑛+1−2𝑘𝑘 (𝑛𝑛 + 1 − 𝑘𝑘
𝑘𝑘 )

⌊𝑛𝑛+1
2 ⌋

𝑘𝑘=0
+ 𝑖𝑖 ∑ 2𝑛𝑛−2𝑘𝑘 (𝑛𝑛 − 𝑘𝑘

𝑘𝑘 )
⌊𝑛𝑛2⌋

𝑘𝑘=0
 

And the desired result is obtained. Thus, the proof is completed.  

In the proof of Theorem  is taken into consideration 𝑥𝑥 < 𝑦𝑦 ⇒ (𝑥𝑥𝑦𝑦) = 0, 𝑥𝑥 < 0 ⇒ (𝑥𝑥𝑦𝑦) = 0  and 

(𝑥𝑥0) = 1.  

In this section, we define some tridiagonal matrix and than show that the permanent 

and determinant of this matrices equal to the Gaussian Pell numbers. 

Definition 2: We define a 𝑛𝑛𝑛𝑛𝑛𝑛 tridiagonal  matrix 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖) with 𝑎𝑎11 = 2𝑖𝑖 − 1, 𝑖𝑖 ≠ 1, 𝑎𝑎𝑖𝑖𝑖𝑖 =

2𝑖𝑖 𝑎𝑎𝑖𝑖+1,𝑖𝑖 = 𝑎𝑎𝑖𝑖,𝑖𝑖+1 = 1 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 0 otherwise. That is, 

𝐴𝐴 =

[
 
 
 
 
 
 2𝑖𝑖 − 1 1 0

1 2𝑖𝑖 1
0 1 2𝑖𝑖

0 ⋯
0 ⋯
1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 1
1 2𝑖𝑖]

 
 
 
 
 
 

𝑛𝑛𝑛𝑛𝑛𝑛
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Then we give following Theorem. 
 

Theorem 2: Let  the matrix 𝐴𝐴 be as in following.  

𝐴𝐴 =

[
 
 
 
 
 
 2𝑖𝑖 − 1 1 0

1 2𝑖𝑖 1
0 1 2𝑖𝑖

0 ⋯
0 ⋯
1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 1
1 2𝑖𝑖]

 
 
 
 
 
 

𝑛𝑛𝑥𝑥𝑥𝑥

 

Then for 𝑛𝑛 ≥ 2  

𝐺𝐺𝐺𝐺0 = 𝑖𝑖, 𝐺𝐺𝐺𝐺1 = 1 and 𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴0 = 1  
𝐺𝐺𝐺𝐺𝑛𝑛 = (−𝑖𝑖)𝑛𝑛−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1) 

where 𝐺𝐺𝐺𝐺𝑛𝑛is the 𝑛𝑛𝑛𝑛ℎ-Gaussian Pell number 
 
Proof: If the determinant is calculated according to the nth row 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = (−1)𝑛𝑛+𝑛𝑛−1𝑑𝑑𝑑𝑑𝑑𝑑

[
 
 
 
 
 
 2𝑖𝑖 − 1 1 0

1 2𝑖𝑖 1
0 1 2𝑖𝑖

0 ⋯
0 ⋯
1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 1]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

                       
                              +2𝑖𝑖(−1)𝑛𝑛+𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)                                                                                        (1) 

 

𝑑𝑑𝑑𝑑𝑑𝑑

[
 
 
 
 
 
 2𝑖𝑖 − 1 1 0

1 2𝑖𝑖 1
0 1 2𝑖𝑖

0 ⋯
0 ⋯
1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 1]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

If the determinant is calculated according to the last column, 
 

𝑑𝑑𝑑𝑑𝑑𝑑

[
 
 
 
 
 
 2𝑖𝑖 − 1 1 0

1 2𝑖𝑖 1
0 1 2𝑖𝑖

0 ⋯
0 ⋯
1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 1]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

= (−1)2𝑛𝑛−2𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−2)𝑥𝑥(𝑛𝑛−2)         (2) 

 
  If (2) is written instead of (1); 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = (−1)𝑛𝑛+𝑛𝑛−1(−1)2𝑛𝑛−2𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−2)𝑥𝑥(𝑛𝑛−2) + 2𝑖𝑖(−1)𝑛𝑛+𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1) 
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                           = −𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−2)𝑥𝑥(𝑛𝑛−2) + 2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)                                                               (3) 
   

 
If The inductive method is used to show that  

𝐺𝐺𝐺𝐺𝑛𝑛 = (−𝑖𝑖)𝑛𝑛−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1) 

For 𝑛𝑛 = 2,  
 

𝐺𝐺𝐺𝐺2 = (−𝑖𝑖)2−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴1𝑥𝑥1 = (−𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑[2𝑖𝑖 − 1] = (−𝑖𝑖)(2𝑖𝑖 − 1) = 2 + 𝑖𝑖 
Let’s assume that it is true for 𝑛𝑛 = 𝑘𝑘. Accordingly, 

𝐺𝐺𝐺𝐺𝑘𝑘 = (−𝑖𝑖)𝑘𝑘−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) 

For 𝑛𝑛 = 𝑘𝑘 + 1, Let’s show that it is 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = (−𝑖𝑖)𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘 

From the relation  

𝐺𝐺𝐺𝐺𝑘𝑘+1 = 2𝐺𝐺𝐺𝐺𝑘𝑘 + 𝐺𝐺𝐺𝐺𝑘𝑘−1 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = 2(−𝑖𝑖)𝑘𝑘−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) + (−𝑖𝑖)𝑘𝑘−2𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2) 

                                     = (−𝑖𝑖)𝑘𝑘[2(−𝑖𝑖)−1𝑑𝑑𝑑𝑑𝑡𝑡𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) + (−𝑖𝑖)−2𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)] 
                                    = (−𝑖𝑖)𝑘𝑘[2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) − 𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)] 
From equation (3) 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = (−𝑖𝑖)𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘 

Definition 3: We define a 𝑛𝑛𝑛𝑛𝑛𝑛 tridiagonal matrix B= (𝑏𝑏𝑖𝑖𝑖𝑖) with 𝑏𝑏11 = 2𝑖𝑖 − 1, 𝑖𝑖 ≠ 1, 𝑏𝑏𝑖𝑖𝑖𝑖 = 2𝑖𝑖 

𝑏𝑏𝑖𝑖+1,𝑖𝑖 = 1  𝑏𝑏𝑖𝑖,𝑖𝑖+1 = −1 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 0 otherwise. That is, 

𝐵𝐵 =

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 −1
1 2𝑖𝑖 ]

 
 
 
 
 
 

𝑛𝑛𝑛𝑛𝑛𝑛

 

 

Then we give following Theorem. 
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                           = −𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−2)𝑥𝑥(𝑛𝑛−2) + 2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)                                                               (3) 
   

 
If The inductive method is used to show that  

𝐺𝐺𝐺𝐺𝑛𝑛 = (−𝑖𝑖)𝑛𝑛−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1) 

For 𝑛𝑛 = 2,  
 

𝐺𝐺𝐺𝐺2 = (−𝑖𝑖)2−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴1𝑥𝑥1 = (−𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑[2𝑖𝑖 − 1] = (−𝑖𝑖)(2𝑖𝑖 − 1) = 2 + 𝑖𝑖 
Let’s assume that it is true for 𝑛𝑛 = 𝑘𝑘. Accordingly, 

𝐺𝐺𝐺𝐺𝑘𝑘 = (−𝑖𝑖)𝑘𝑘−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) 

For 𝑛𝑛 = 𝑘𝑘 + 1, Let’s show that it is 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = (−𝑖𝑖)𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘 

From the relation  

𝐺𝐺𝐺𝐺𝑘𝑘+1 = 2𝐺𝐺𝐺𝐺𝑘𝑘 + 𝐺𝐺𝐺𝐺𝑘𝑘−1 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = 2(−𝑖𝑖)𝑘𝑘−1𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) + (−𝑖𝑖)𝑘𝑘−2𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2) 

                                     = (−𝑖𝑖)𝑘𝑘[2(−𝑖𝑖)−1𝑑𝑑𝑑𝑑𝑡𝑡𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) + (−𝑖𝑖)−2𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)] 
                                    = (−𝑖𝑖)𝑘𝑘[2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) − 𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)] 
From equation (3) 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = (−𝑖𝑖)𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘 

Definition 3: We define a 𝑛𝑛𝑛𝑛𝑛𝑛 tridiagonal matrix B= (𝑏𝑏𝑖𝑖𝑖𝑖) with 𝑏𝑏11 = 2𝑖𝑖 − 1, 𝑖𝑖 ≠ 1, 𝑏𝑏𝑖𝑖𝑖𝑖 = 2𝑖𝑖 

𝑏𝑏𝑖𝑖+1,𝑖𝑖 = 1  𝑏𝑏𝑖𝑖,𝑖𝑖+1 = −1 for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 0 otherwise. That is, 

𝐵𝐵 =

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 −1
1 2𝑖𝑖 ]

 
 
 
 
 
 

𝑛𝑛𝑛𝑛𝑛𝑛

 

 

Then we give following Theorem. 
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Theorem 3: 

𝐵𝐵 =

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 −1
1 2𝑖𝑖 ]

 
 
 
 
 
 

𝑛𝑛𝑛𝑛𝑛𝑛

 

Then for 𝑛𝑛 ≥ 2  

𝐺𝐺𝐺𝐺0 = 𝑖𝑖, 𝐺𝐺𝐺𝐺1 = 1 and 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵0 = 1  
𝐺𝐺𝐺𝐺𝑛𝑛 = (−𝑖𝑖)𝑛𝑛−1𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1) 

 
where 𝐺𝐺𝐺𝐺𝑛𝑛is the 𝑛𝑛𝑛𝑛ℎ-Gaussian Pell number 
 
Proof :We prove this by  induction on 𝑛𝑛. 

 
𝐺𝐺𝐺𝐺𝑛𝑛 = (−𝑖𝑖)𝑛𝑛−1𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1) 

It s true for 𝑛𝑛 = 2, 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵1𝑋𝑋1 = 𝑎𝑎11 = (2𝑖𝑖 − 1) 
 

𝐺𝐺𝐺𝐺2 = (−𝑖𝑖)1(2𝑖𝑖 − 1) = 2 + 𝑖𝑖. 
 

Let’s assume that it is true for 𝑛𝑛 = 𝑘𝑘. Accordingly, 

𝐺𝐺𝐺𝐺𝑘𝑘 = (−𝑖𝑖)𝑘𝑘−1𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1). 

 

For 𝑛𝑛 = 𝑘𝑘 + 1, Let’s show that it is 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = (−𝑖𝑖)𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑘𝑘𝑘𝑘𝑘𝑘 

From the relation 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = 2𝐺𝐺𝐺𝐺𝑘𝑘 + 𝐺𝐺𝐺𝐺𝑘𝑘−1 

 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = 2(−𝑖𝑖)𝑘𝑘−1𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) + (−𝑖𝑖)𝑘𝑘−2𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2) 

                                     = (−𝑖𝑖)𝑘𝑘[2(−𝑖𝑖)−1𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) + (−𝑖𝑖)−2𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)] 
                                    = (−𝑖𝑖)𝑘𝑘[2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) − 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)]                                       (4) 

If we expand the 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑘𝑘𝑘𝑘𝑘𝑘 by the Laplace expansion of a permanent with respect to the last row 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 = 1. 𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 −1]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

+ 2𝑖𝑖. 𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 2𝑖𝑖]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 −1]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

by the Laplace expansion of a permanent with respect to the last coloumn 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 = 1. (−1)𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 −1
1 2𝑖𝑖 ]

 
 
 
 
 
 

(𝑛𝑛−2)𝑥𝑥(𝑛𝑛−2)

+ 2𝑖𝑖. 𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 2𝑖𝑖]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

 
 

And then  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 = 1. (−1)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2) + 2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1)                              (5) 

If (5) is used to (4); 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = (−𝑖𝑖)𝑘𝑘[2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) − 𝑃𝑃𝑒𝑒𝑒𝑒𝐵𝐵(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)] = (−𝑖𝑖)𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 

 
REFERENCES 
 

1. Horadam, A.F. Complex Fibonacci numbers and Fibonacci quaternions. The American 

Mathematical Monthly, Vol:70, No:3, 289-291, 1963. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 = 1. 𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 −1]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

+ 2𝑖𝑖. 𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 2𝑖𝑖]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 −1]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

by the Laplace expansion of a permanent with respect to the last coloumn 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 = 1. (−1)𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 −1
1 2𝑖𝑖 ]

 
 
 
 
 
 

(𝑛𝑛−2)𝑥𝑥(𝑛𝑛−2)

+ 2𝑖𝑖. 𝑃𝑃𝑃𝑃𝑃𝑃

[
 
 
 
 
 
 2𝑖𝑖 − 1 −1 0

1 2𝑖𝑖 −1
0 1 2𝑖𝑖

0 ⋯
0 ⋯

−1 ⋯

0 0
0 0
0 0

           ⋮        ⋮   ⋮        
           0      0 0 ⋱ ⋮ ⋮

   0    0   0 ⋯ 2𝑖𝑖 0
1 2𝑖𝑖]

 
 
 
 
 
 

(𝑛𝑛−1)𝑥𝑥(𝑛𝑛−1)

 

 
 

And then  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 = 1. (−1)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2) + 2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1)                              (5) 

If (5) is used to (4); 

𝐺𝐺𝐺𝐺𝑘𝑘+1 = (−𝑖𝑖)𝑘𝑘[2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵(𝑘𝑘−1)𝑥𝑥(𝑘𝑘−1) − 𝑃𝑃𝑒𝑒𝑒𝑒𝐵𝐵(𝑘𝑘−2)𝑥𝑥(𝑘𝑘−2)] = (−𝑖𝑖)𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 
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Abstract  

In this study, we introduce the class of demi-weak almost limited operators on a Banach 
lattice as a generalization of weak almost limited operators defined by Elbour A., Machrafi N., 
and Moussa M. in 2015. Let 𝐸𝐸 be a Banach lattice, an operator 𝑇𝑇:𝐸𝐸 → 𝐸𝐸 is called a demi-weak 
almost limited operator if for every sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 and every pairwise disjoint sequence 

(𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′ whenever 𝑥𝑥𝑛𝑛
𝑤𝑤
→ 0 , 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0  and (𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0  implies 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0 . We 

examine the relationship between weak almost limited operators and demi-weak almost limited 
operators. In addition, we establish a characterization of demi-weak almost limited operators. 
Finally, we obtain some properties of the class of demi-weak almost limited operators. 

Keywords: Weak almost limited operators; Demi-weak almost limited operators; Limited 

operators; Banach lattice.  

1.INTRODUCTION 

 The demi notation was first used by Petryshyn in 1966 [11]. Krichen and Regan studied 
the class of weakly demicompact operators in 2019 [3]. After that, the class of demi Dunford-
Pettis operators was introduced by Benkhaled, Hajji and Jeribi [8]. The class of order weakly 
demicompact operators was studied by Benkhaled, Elluech and Jeribi in 2020 [9]. Recently, 
further studies on the demi class were introduced by Keles and Altın [6,7].  

 Elbour, Machrafi, and Moussa introduced the class of weak almost limited operators in 
2015. Recall from [1] let 𝐸𝐸  be a Banach space and 𝐹𝐹  be a Banach lattice.   An operator       
𝑇𝑇:𝐸𝐸 → 𝐹𝐹  is called a weak almost limited operator if 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0 for every weakly null 
sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸  and every weak* null sequence (𝑓𝑓𝑛𝑛) ⊂ 𝐹𝐹′  with pairwise disjoint terms. 
The class of all weak almost limited operators from 𝐸𝐸 into 𝐹𝐹 is denoted by 𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸,𝐹𝐹).  

 In this study, we introduce the class of demi-weak almost limited operators on a Banach 
lattice as a generalization of weak almost limited operators. 

 In this study, the identity operator is denoted by I. For all other undefined terms and 
notations, we will adhere to the conventions in [4,5,10]. 
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Abstract  

In this study, we introduce the class of demi-weak almost limited operators on a Banach 
lattice as a generalization of weak almost limited operators defined by Elbour A., Machrafi N., 
and Moussa M. in 2015. Let 𝐸𝐸 be a Banach lattice, an operator 𝑇𝑇:𝐸𝐸 → 𝐸𝐸 is called a demi-weak 
almost limited operator if for every sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 and every pairwise disjoint sequence 

(𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′ whenever 𝑥𝑥𝑛𝑛
𝑤𝑤
→ 0 , 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0  and (𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0  implies 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0 . We 

examine the relationship between weak almost limited operators and demi-weak almost limited 
operators. In addition, we establish a characterization of demi-weak almost limited operators. 
Finally, we obtain some properties of the class of demi-weak almost limited operators. 

Keywords: Weak almost limited operators; Demi-weak almost limited operators; Limited 

operators; Banach lattice.  

1.INTRODUCTION 

 The demi notation was first used by Petryshyn in 1966 [11]. Krichen and Regan studied 
the class of weakly demicompact operators in 2019 [3]. After that, the class of demi Dunford-
Pettis operators was introduced by Benkhaled, Hajji and Jeribi [8]. The class of order weakly 
demicompact operators was studied by Benkhaled, Elluech and Jeribi in 2020 [9]. Recently, 
further studies on the demi class were introduced by Keles and Altın [6,7].  

 Elbour, Machrafi, and Moussa introduced the class of weak almost limited operators in 
2015. Recall from [1] let 𝐸𝐸  be a Banach space and 𝐹𝐹  be a Banach lattice.   An operator       
𝑇𝑇:𝐸𝐸 → 𝐹𝐹  is called a weak almost limited operator if 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0 for every weakly null 
sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸  and every weak* null sequence (𝑓𝑓𝑛𝑛) ⊂ 𝐹𝐹′  with pairwise disjoint terms. 
The class of all weak almost limited operators from 𝐸𝐸 into 𝐹𝐹 is denoted by 𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸,𝐹𝐹).  

 In this study, we introduce the class of demi-weak almost limited operators on a Banach 
lattice as a generalization of weak almost limited operators. 

 In this study, the identity operator is denoted by I. For all other undefined terms and 
notations, we will adhere to the conventions in [4,5,10]. 

 

 

2.MAIN RESULTS 

 

Definition 2.1. Let 𝐸𝐸 be a Banach lattice, an operator 𝑇𝑇:𝐸𝐸 → 𝐸𝐸 is called a demi-weak almost 
limited operator if for every sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸  and every pairwise disjoint sequence         

(𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′  whenever 𝑥𝑥𝑛𝑛
𝑤𝑤
→ 0 , 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0 and (𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0 implies 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0 . The 

class of all demi-weak almost limited operators on 𝐸𝐸 is denoted by 𝐷𝐷𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸). 

 

Example 2.1 Let 𝐸𝐸 be a Banach lattice. Then, 𝛼𝛼𝛼𝛼 is a demi-weak almost limited operator on 𝐸𝐸  
for all 𝛼𝛼 ≠ 1.  

Indeed; assume that for every sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸  and every pairwise disjoint sequence      

(𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′ such that 𝑥𝑥𝑛𝑛
𝑤𝑤
→0 , 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0  and (𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝛼𝛼𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)) →0 . Thus, it follows that       

𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)(1− 𝛼𝛼) →0, and hence 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0. This shows that 𝛼𝛼𝛼𝛼 is a demi-weak almost limited 
operator for all 𝛼𝛼 ≠ 1. 

 

Example 2.2  Let 𝐸𝐸 = 𝑐𝑐0. Consider the sequence (𝑒𝑒𝑛𝑛) ⊂ 𝐸𝐸 whose the n-th term is one, and all 

other terms are zero. It is well known that 𝑒𝑒𝑛𝑛
𝑤𝑤
→0 in 𝐸𝐸 and  (𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′ defined 𝑓𝑓𝑛𝑛: 𝑙𝑙1 → ℝ  by 

𝑓𝑓𝑛𝑛(𝛼𝛼) = 𝛼𝛼𝑛𝑛 for all 𝛼𝛼 = (𝛼𝛼𝑛𝑛) ∈ 𝑙𝑙1. Then, each the sequence (𝑓𝑓𝑛𝑛) is pairwise disjoint,  𝑓𝑓𝑛𝑛
𝑤𝑤∗
→ 0 

and (𝑓𝑓𝑛𝑛(𝑒𝑒𝑛𝑛)− 𝑓𝑓𝑛𝑛(𝐼𝐼(𝑒𝑒𝑛𝑛)) = (0) →0 holds. On the other hand; since 𝑓𝑓𝑛𝑛(𝑒𝑒𝑛𝑛) = 1 for all 𝑛𝑛 ∈ ℕ, 
the identity operator on 𝑐𝑐0 is not a demi- weak almost limited operator. 

 

Example 2.3 Let 𝑛𝑛 ∈ ℕ , and define the operator 𝑇𝑇𝑛𝑛: 𝑐𝑐0 → 𝑐𝑐0  by 𝑇𝑇𝑛𝑛(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖𝑛𝑛
𝑖𝑖=1 . The 

operator 𝑇𝑇𝑛𝑛 is a demi-weak almost limited operator. Now, define 𝑅𝑅𝑛𝑛 = 𝐼𝐼 + 𝑇𝑇𝑛𝑛 for each 𝑛𝑛 ∈ ℕ. 
It is clear that 𝑅𝑅𝑛𝑛 is not a demi-weak almost limited operator for each 𝑛𝑛 ∈ ℕ.  
 

Theorem 2.1 Let 𝐸𝐸 be a Banach lattice. Then, every weak almost limited operator on 𝐸𝐸 is  
demi-weak almost limited.  
 

Proof Let 𝑇𝑇:𝐸𝐸 → 𝐸𝐸  be a weak almost limited operator. Assume that for every sequence    
(𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸  and every pairwise disjoint sequence (𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′ such that 𝑥𝑥𝑛𝑛

𝑤𝑤
→0 , 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0  and 

(𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛))) →0. It can be written as 
 

𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) = [𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛))] + [𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛))]. 
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From the assumption, the equality and 𝑇𝑇 ∈ 𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸), it is obtained that 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0. As a result, 
𝑇𝑇 is a demi-weak almost limited operator.  
 
It is given in Theorem 2.1 that every weak almost limited operator is a demi-weak almost 
limited; however, the converse is not true in general.   
 

Example 2.4 Let 𝑇𝑇: 𝑐𝑐0 → 𝑐𝑐0  be an operator and 𝑇𝑇 = 1
2 𝐼𝐼 . Since 𝐼𝐼  is not demi-weak almost 

limited from Example 2.2, 𝐼𝐼 is not a weak almost limited operator. As a result, it is easily seen 
that 12 𝐼𝐼 is not weak almost limited but 𝑇𝑇 is a demi-weak almost limited operator from Example 
2.1.  
 

Example 2.5 Let 𝑇𝑇, 𝑆𝑆: 𝑐𝑐0 → 𝑐𝑐0 be operators defined by 𝑇𝑇 = 𝑆𝑆 = 1
2 𝐼𝐼. By Example 2.1 𝑇𝑇 and 𝑆𝑆 

are demi-weak almost limited operators. However, 𝑇𝑇 + 𝑆𝑆 = 𝐼𝐼  is not a demi-weak almost 
limited operator from Example 2.2.  
 
As a result, Example 2.5 shows that the class of demi-weak almost limited operators is not a 
vector space.  
 

Theorem 2.2 Let 𝐸𝐸 be a Banach lattice,  𝑇𝑇:𝐸𝐸 → 𝐸𝐸  be a weak almost limited operator and  
𝑆𝑆:𝐸𝐸 → 𝐸𝐸 be a demi-weak almost limited operator. Then, 𝑇𝑇 + 𝑆𝑆 is demi-weak almost limited.  
 

Proof Let (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 be a sequence and (𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′  be a pairwise disjoint sequence such that       

𝑥𝑥𝑛𝑛
𝑤𝑤
→0 , 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0  and (𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛((𝑇𝑇 + 𝑆𝑆)(𝑥𝑥𝑛𝑛)) →0 .  Since 𝑇𝑇  is a weak almost limited 

operator, it is obtained that 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0. It can be written as 
 

𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛(𝑆𝑆(𝑥𝑥𝑛𝑛)) = 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) + 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛))− 𝑓𝑓𝑛𝑛(𝑆𝑆(𝑥𝑥𝑛𝑛)) 
 

                       = 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛((𝑇𝑇 + 𝑆𝑆)(𝑥𝑥𝑛𝑛)) + 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)). 
 

From the hypothesis, the equality and 𝑇𝑇 ∈ 𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸), it is obtained that 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛(𝑆𝑆(𝑥𝑥𝑛𝑛)) →0.  
Since 𝑆𝑆 ∈ 𝐷𝐷𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸), it is seen that 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0. Thus, 𝑇𝑇 + 𝑆𝑆 is a demi-weak almost limited 
operator.  
 

Definition 2.2 Let 𝐸𝐸  be a Banach lattice. 𝐸𝐸  has the weak almost limited-property                     
(wal-property) if for every weakly null sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 and every weak* null sequence         
(𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′ with pairwise disjoint terms, then 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0.  
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From the assumption, the equality and 𝑇𝑇 ∈ 𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸), it is obtained that 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0. As a result, 
𝑇𝑇 is a demi-weak almost limited operator.  
 
It is given in Theorem 2.1 that every weak almost limited operator is a demi-weak almost 
limited; however, the converse is not true in general.   
 

Example 2.4 Let 𝑇𝑇: 𝑐𝑐0 → 𝑐𝑐0  be an operator and 𝑇𝑇 = 1
2 𝐼𝐼 . Since 𝐼𝐼  is not demi-weak almost 

limited from Example 2.2, 𝐼𝐼 is not a weak almost limited operator. As a result, it is easily seen 
that 12 𝐼𝐼 is not weak almost limited but 𝑇𝑇 is a demi-weak almost limited operator from Example 
2.1.  
 

Example 2.5 Let 𝑇𝑇, 𝑆𝑆: 𝑐𝑐0 → 𝑐𝑐0 be operators defined by 𝑇𝑇 = 𝑆𝑆 = 1
2 𝐼𝐼. By Example 2.1 𝑇𝑇 and 𝑆𝑆 

are demi-weak almost limited operators. However, 𝑇𝑇 + 𝑆𝑆 = 𝐼𝐼  is not a demi-weak almost 
limited operator from Example 2.2.  
 
As a result, Example 2.5 shows that the class of demi-weak almost limited operators is not a 
vector space.  
 

Theorem 2.2 Let 𝐸𝐸 be a Banach lattice,  𝑇𝑇:𝐸𝐸 → 𝐸𝐸  be a weak almost limited operator and  
𝑆𝑆:𝐸𝐸 → 𝐸𝐸 be a demi-weak almost limited operator. Then, 𝑇𝑇 + 𝑆𝑆 is demi-weak almost limited.  
 

Proof Let (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 be a sequence and (𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′  be a pairwise disjoint sequence such that       

𝑥𝑥𝑛𝑛
𝑤𝑤
→0 , 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0  and (𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝑓𝑓𝑛𝑛((𝑇𝑇 + 𝑆𝑆)(𝑥𝑥𝑛𝑛)) →0 .  Since 𝑇𝑇  is a weak almost limited 

operator, it is obtained that 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0. It can be written as 
 

𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛(𝑆𝑆(𝑥𝑥𝑛𝑛)) = 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) + 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛))− 𝑓𝑓𝑛𝑛(𝑆𝑆(𝑥𝑥𝑛𝑛)) 
 

                       = 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛((𝑇𝑇 + 𝑆𝑆)(𝑥𝑥𝑛𝑛)) + 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)). 
 

From the hypothesis, the equality and 𝑇𝑇 ∈ 𝐿𝐿𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸), it is obtained that 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)− 𝑓𝑓𝑛𝑛(𝑆𝑆(𝑥𝑥𝑛𝑛)) →0.  
Since 𝑆𝑆 ∈ 𝐷𝐷𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤(𝐸𝐸), it is seen that 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0. Thus, 𝑇𝑇 + 𝑆𝑆 is a demi-weak almost limited 
operator.  
 

Definition 2.2 Let 𝐸𝐸  be a Banach lattice. 𝐸𝐸  has the weak almost limited-property                     
(wal-property) if for every weakly null sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 and every weak* null sequence         
(𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′ with pairwise disjoint terms, then 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) →0.  
 

Example 2.6 Let 𝐸𝐸 = 𝑙𝑙1 . 𝐸𝐸  has the wal-propery. Indeed; assume that sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 , 

disjoint sequence (𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′  such that 𝑥𝑥𝑛𝑛
𝑤𝑤
→ 0  and 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0 . Since 𝐸𝐸  has the Schur property,      

𝑥𝑥𝑛𝑛
‖.‖
→ 0  [4], and from Banach Steinhaus Theorem [2], it is obtained that                              

𝑠𝑠𝑠𝑠𝑠𝑠{ ‖𝑓𝑓𝑛𝑛‖ ∶ 𝑛𝑛 ∈ ℕ } = 𝑀𝑀 < ∞.  On the other hand,                                                                                      
0 ≤ |𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛)| ≤ ‖𝑓𝑓𝑛𝑛‖‖𝑥𝑥𝑛𝑛‖ ≤ 𝑀𝑀‖𝑥𝑥𝑛𝑛‖

𝑛𝑛→∞
→   0. Hence, 𝑓𝑓𝑛𝑛(𝑥𝑥𝑛𝑛) → 0.  

 
Example 2.7 All finite-dimensional spaces have the wal-property. 
 
For the next theorem, we need some notations.  
 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸) ≔ {𝑇𝑇| 𝑇𝑇:𝐸𝐸 ⟶ 𝐸𝐸 continuous weak almost limited operator} 

𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸) ≔ {𝑇𝑇| 𝑇𝑇:𝐸𝐸 ⟶ 𝐸𝐸 continuous demi −  weak almost limited operator} 
 

Theorem 2.3 Let 𝐸𝐸 be a Banach lattice. Then, the following statements are equivalent.  

 

𝑖𝑖) 𝐸𝐸 has the wal-property. 

𝑖𝑖𝑖𝑖) 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸)= 𝐷𝐷𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸). 
 

Proof (𝑖𝑖) ⟹ (𝑖𝑖𝑖𝑖) It is known that 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸) ⊂ 𝐷𝐷𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸) from Theorem 2.1.  Let  (𝑥𝑥𝑛𝑛) ⊂ 𝐸𝐸 

be a sequence, (𝑓𝑓𝑛𝑛) ⊂ 𝐸𝐸′  be a disjoint sequence such that 𝑥𝑥𝑛𝑛
𝑤𝑤
→ 0 and 𝑓𝑓𝑛𝑛

𝑤𝑤∗
→ 0 and let 𝑇𝑇 be a 

continuous demi-weak almost limited operator. Given that 𝑇𝑇 is a continuous operator, it is 
obtained that 𝑇𝑇(𝑥𝑥𝑛𝑛)

𝑤𝑤
→ 0. Since 𝐸𝐸 has the wal-property, it follows that 𝑓𝑓𝑛𝑛(𝑇𝑇(𝑥𝑥𝑛𝑛)) →0. Thus, 𝑇𝑇 

is demi-weak almost limited. 
 
(𝑖𝑖𝑖𝑖) ⟹ (𝑖𝑖) Let  𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸) = 𝐷𝐷𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸) . Since  𝐼𝐼2 ∈ 𝔇𝔇𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸)  from Example 2.1, then                    
𝐼𝐼
2 ∈ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸). Thus, 𝐼𝐼 ∈ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸). Hence, 𝐸𝐸 has wal-property from Definition 2.2.  

 

Conclusion 2.1 Let 𝐸𝐸 be a Banach lattice. Then, the following statements are equivalent: 

 

𝑖𝑖) All continuous operators on 𝐸𝐸 are demi-weak almost limited operator. 
(𝑖𝑖𝑖𝑖) 𝐼𝐼:𝐸𝐸 → 𝐸𝐸  is a demi-weak almost limited operator. 

(𝑖𝑖𝑖𝑖𝑖𝑖) 𝐸𝐸 has the wal-property. 
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3.CONCLUSIONS 

In this study, the class of demi-weak almost limited operators on a Banach lattice is introduced 
as a generalization of the weak almost limited operators defined by Elbour A., Machrafi N., and 
Moussa M. in 2015. It is shown that the class of demi- weak almost limited operators is not 
generally a vector space. In addition, the relationship between weak almost limited operators 
and demi- weak almost limited operators is studied. Moreover, it is concluded that the class of 
demi-weak almost limited operators includes the class of weak almost limited operators. 
Finally, the wal-property is defined on Banach lattice 𝐸𝐸, and a characterization of the wal-
property is examined in terms of continuous demi-weak almost limited operators. 
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A STUDY ON WARDOWSKI CONTRACTION IN 𝑨𝑨-METRIC SPACES 

SÜHEYLA ELMAS 1AND ALEYNA KAMBER ÖZEL2 

Abstract 

In this writing, we explore Wardowski’s contraction principle for 𝐹𝐹 -contraction mappings 
and demonstrate the existence and uniqueness o fixed points in 𝐴𝐴 -Metric Spaces. 

Introduction and preliminaries 

The Banach contraction principle (BCP) [1] is widely regarded as one of the most signi cant 
results in metric xed point theory, largely in view of its simplicity and the practicality with 
which it can be applied across various mathematical disciplines. The theory of xed points 
combines ideas from topology, analysis, and geometry to investigate the existence and 
uniqueness of fixed points of a map. Over time, the BCP hasundergone a variety of 
generalizations in diferent directions. For example, Wardowski (2012) [2] extended the BCP 
and formulated the 𝐹𝐹 -contraction , which inspired a range of subsequent studies on 𝐹𝐹 -
contractions more, [3], [4], [5]and [6] 

Definition: [2]Let (Η, 𝐴𝐴) be a metric space. A map 𝐻𝐻: 𝑤𝑤 → 𝑤𝑤 is called to be a 𝐹𝐹 –
contractions if there 𝜏𝜏 > 0 such that for any 𝑤𝑤, 𝜛𝜛 ∈ Η  

⌈𝑑𝑑(𝐻𝐻𝑤𝑤, 𝐻𝐻𝜛𝜛) > 0 ⇒ 𝜏𝜏 + 𝐹𝐹 (𝑑𝑑(𝐻𝐻𝑤𝑤, 𝐻𝐻𝜛𝜛) ≤ 𝐹𝐹(𝑑𝑑(𝑤𝑤, 𝜛𝜛)))⌉ 

Here 𝐹𝐹: 𝑅𝑅+ → 𝑅𝑅 is a map fulfilling  the following criterias: 

(𝐹𝐹1) 𝐹𝐹 is strictly increasing, via, for every 𝑤𝑤, 𝜛𝜛 ∈ 𝑅𝑅+such that 𝑤𝑤 < 𝜛𝜛 , 𝐻𝐻𝑤𝑤 < 𝐻𝐻𝜛𝜛 

(𝐹𝐹2) For all sequence {𝜒𝜒𝑛𝑛}𝑛𝑛=1
∞ ⊆ 𝑅𝑅+ lim

𝑛𝑛→∞
𝜒𝜒𝑛𝑛 = 0  iff lim

𝑛𝑛→∞
𝐹𝐹(𝜒𝜒𝑛𝑛) = −∞ 

(𝐹𝐹3) There is 𝑘𝑘 ∈ (0,1) such that lim
𝜒𝜒→0+ 𝜒𝜒𝑘𝑘 𝐹𝐹(𝜒𝜒) = 0 

The set 𝐹𝐹 is defined as the collection of whole maps fulfilling states (F1) − (F3). Gähler 
(1963) [8] presented the concept of a 2- metrict space and argued that this space is a 
generalization of an ordinary metric space. For valuable investigations on fixed point results, 
Dhage (1992) [9] recommended refining the basic framework of the 2-metric space. In (1984) 
[10] introduced the concept of a 𝐷𝐷-metric space. Naidu et al. (2004) [11] demonstrated that 
the notions of convergent sequences and sequential continuity are not clearly de ned in 𝐷𝐷 -
metric spaces. In (2005) [12], they highlighted certain limitations in the notion of open balls 
in 𝐷𝐷 -metric spaces. The authors (2006) [13] developed the notion of 𝐺𝐺-metric space and 
examined its topological characteristics. Unlike the theory of 𝐺𝐺-metric spaces, here states 

(𝐷𝐷1) 𝐷𝐷(𝑤𝑤, 𝜛𝜛, 𝜓𝜓) ≥ 0 , ∀ 𝑤𝑤, 𝜛𝜛, 𝜓𝜓 ∈ Η and equality is valid if 𝑤𝑤 = 𝜛𝜛 = 𝜓𝜓 where 𝐷𝐷:Η3 → ℝ 
is the function; 
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was replaced by the following three separate axioms, here  𝐺𝐺:Η3 is the function 𝐺𝐺:Η3 → ℝ  
is the function 

(𝐺𝐺1) 𝐺𝐺(𝑤𝑤, 𝜛𝜛, 𝜓𝜓) = 0 if 𝑤𝑤 = 𝜛𝜛 = 𝜓𝜓 , ∀ 𝑤𝑤, 𝜛𝜛, 𝜓𝜓 ∈ Η 

(𝐺𝐺2) 𝐺𝐺(𝑤𝑤, 𝜛𝜛, 𝜛𝜛) ≥ 0, ∀ 𝑤𝑤, 𝜛𝜛, ∈ Η 

(𝐺𝐺2) 𝐺𝐺(𝑤𝑤, 𝑤𝑤, 𝜛𝜛) ≤ 𝐺𝐺( 𝑤𝑤, 𝜛𝜛, 𝜓𝜓), ∀ 𝑤𝑤, 𝜛𝜛, 𝜓𝜓 ∈ Η via 𝜛𝜛 ≠ 𝜓𝜓 

Sedghi et al. (2007) [14] pointed out that condition (D1) could be substituted by just two 
axioms and thereby proposed the concept of a 𝐷𝐷∗ - metric space. 

Remark 1. Each 𝐺𝐺 -metric space is a 𝐷𝐷∗ metric space as well. 

The authors (2012) [15] highlighted that condition (G3) is a distinct limitation of the 𝐺𝐺 metric 
space, whereas the symmetry condition was identifed as a shared weakness in both 𝐷𝐷∗ and 𝐺𝐺 -
metric spaces. To tackle these problems, these authors developed a new generalized metric 
space referred to as a 𝑆𝑆 metric space. 

 

Remark 2.[7] Each 𝐷𝐷∗ -metric space is also a 𝑆𝑆 -metric space. 

Remark 3. [7]The 𝑆𝑆 -metric space serves as a broader concept that includes both the 𝐺𝐺 -
metric space and the 𝐷𝐷∗metric space.  

Abbas, et al. (2015) [7]  present the notion of an 𝐴𝐴-metric space as outlined: 

Definition 2. [7] Let be Η a nonvoid set. A map  𝐴𝐴:Η𝑛𝑛 → [0,∞) is said an 𝐴𝐴-metric  space is 
said on if for any  𝑤𝑤𝑖𝑖 , 𝑖𝑖 = 1,2,3, … , 𝑛𝑛 the following terms apply: 

1) 𝐴𝐴(𝑤𝑤1, 𝑤𝑤2,𝑤𝑤3, … , 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛) ≥ 0 

2) 𝐴𝐴(𝑤𝑤1, 𝑤𝑤2,𝑤𝑤3, … , 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛) = 0 ⟺ 𝑤𝑤1 = 𝑤𝑤2 = 𝑤𝑤3 = ⋯ = 𝑤𝑤𝑛𝑛−1 = 𝑤𝑤𝑛𝑛 

3)A(𝑤𝑤1, 𝑤𝑤2,𝑤𝑤3, … , 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛) ≤ 𝐴𝐴 (𝑤𝑤1, 𝑤𝑤1, 𝑤𝑤1, … , 𝑤𝑤1(𝑛𝑛−1) , 𝛾𝛾) 

+𝐴𝐴 (𝑤𝑤2, 𝑤𝑤2, 𝑤𝑤2, … , 𝑤𝑤2(𝑛𝑛−1), 𝛾𝛾) 

                                                    . 

                                                    . 

                                                    . 

                                                +𝐴𝐴(𝑤𝑤(𝑛𝑛−1),𝑤𝑤(𝑛𝑛−1),𝑤𝑤(𝑛𝑛−1), … , 𝑤𝑤(𝑛𝑛−1)(𝑛𝑛−1) , 𝛾𝛾) 

                                                 𝐴𝐴(𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, … , 𝑤𝑤𝑛𝑛(𝑛𝑛−1) , 𝛾𝛾) 



18 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

 

The dual  (Η, 𝐴𝐴) is said an 𝐴𝐴-metric space. From here it can be seen that the 𝐴𝐴-metric space is 
actually the 𝑛𝑛 -dimensional 𝑆𝑆 -metric space.  

Example 1. Let Η = ℝ. Describe a map 𝐴𝐴:Η𝑛𝑛 → [0,∞) as 

𝐴𝐴(𝑤𝑤1, 𝑤𝑤2,𝑤𝑤3, … , 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛) = |𝑤𝑤(𝑛𝑛) + 𝑤𝑤(𝑛𝑛−1) + ⋯ + 𝑤𝑤2 − (𝑛𝑛 − 1)𝑤𝑤1| 

                                             +|𝑤𝑤(𝑛𝑛) + 𝑤𝑤(𝑛𝑛−1) + ⋯ + 𝑤𝑤3 − (𝑛𝑛 − 2)𝑤𝑤2| 

                                             . 

                                             . 

                                             . 

 

                                             +|𝑤𝑤(𝑛𝑛) + 𝑤𝑤(𝑛𝑛−1) + 𝑤𝑤(𝑛𝑛−2) − 3𝑤𝑤(𝑛𝑛−3)| 

                                             +|𝑤𝑤(𝑛𝑛) + 𝑤𝑤(𝑛𝑛−1) − 2𝑤𝑤(𝑛𝑛−2)| 

                                              +|𝑤𝑤(𝑛𝑛) + 𝑤𝑤(𝑛𝑛−1)| 

Then (Η, 𝐴𝐴) is an  𝐴𝐴-metric space.  

Encouraged by these points, we first introduce and examine 𝐹𝐹-contraction in 𝐴𝐴-metric space 
as indicated below: 

Definition 3.Let (Η, 𝐴𝐴) be an 𝐴𝐴-metric space. A map 𝐻𝐻:Η → Η is called to be 𝐹𝐹-contraction 
if there is 𝜏𝜏 > 0 such that for any 𝑤𝑤, 𝜛𝜛 ∈ Η, 

𝐴𝐴(Hw, Hw,Ηw, … ,Ηw,Ηϖ) > 0 ⇒ 

𝜏𝜏 + 𝐹𝐹(Hw, Hw,Ηw, … ,Ηw,Ηϖ) ≤ F(A(w, w, w, … , w,ω)) 

Here 𝐹𝐹: 𝑅𝑅+ → 𝑅𝑅 is a satisfying the following states: 

(𝐹𝐹1) 𝐹𝐹 is strictly increasing,via, for every 𝑤𝑤, 𝜛𝜛 ∈ 𝑅𝑅+ such that 𝑤𝑤 < 𝜛𝜛, 𝐹𝐹(𝑤𝑤) < 𝐹𝐹(𝜛𝜛) 

(𝐹𝐹1) For all sequence {𝜒𝜒𝑛𝑛}𝑛𝑛=1
∞ ⊆ 𝑅𝑅+ lim

𝑛𝑛→∞
𝜒𝜒𝑛𝑛 = 0  iff lim

𝑛𝑛→∞
𝐹𝐹(𝜒𝜒𝑛𝑛) = −∞ 

(𝐹𝐹3) There is 𝑘𝑘 ∈ (0,1) such that lim
𝜒𝜒→0+ 𝜒𝜒𝑘𝑘 𝐹𝐹(𝜒𝜒) = 0 

Lemma 1. Let 𝐹𝐹: 𝑅𝑅+ → 𝑅𝑅 be an increasing map and {𝜒𝜒𝑛𝑛}𝑛𝑛=1
∞ ⊆ 𝑅𝑅+. Then the following terms 

apply: 

(𝑎𝑎) If lim
𝑛𝑛→∞

𝐹𝐹(𝜒𝜒𝑛𝑛) = −∞, then lim
𝑛𝑛→∞

𝜒𝜒𝑛𝑛 = 0   
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(𝑏𝑏)If 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −∞ and lim
𝑛𝑛→∞

𝜒𝜒𝑛𝑛 = 0,then lim
𝑛𝑛→∞

𝐹𝐹(𝜒𝜒𝑛𝑛) = −∞ 

By proving Lemma 1. , Secelan [17] verified that the condition (𝐹𝐹2) in Definition 1. can be 
substituted with an equivalent, simpler condition, 

(𝐹𝐹2′) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −∞ 

as an alternative, additionally, with 

(𝐹𝐹2′′) there exist a sequence {𝜒𝜒𝑛𝑛}𝑛𝑛=1
∞ ⊆ 𝑅𝑅+ such that lim

𝑛𝑛→∞
𝐹𝐹(𝜒𝜒𝑛𝑛) = −∞ 

In the current paper, we use 𝐹𝐹-contraction maps in 𝐴𝐴-metric spaces and aim to extend 
Wardowski’s theorem to 𝐴𝐴-metric spaces. There has been a rising interest in the 
generalization of classical metric spaces in the past few years. In this framework, 2-metric, 𝐷𝐷-
metric, and 𝐺𝐺-metric spaces are viewed as generalized forms of usual metric spaces. The most 
crucial of these generalizations is 𝐴𝐴-metric spaces, since this space was developed to measure 
the distance between 𝑛𝑛points at the same time. 

Theorem 1.Let (Η, 𝐴𝐴) be a complete 𝐴𝐴-metric space and let a map 𝐻𝐻:Η → Η be a 𝐹𝐹 
contraction. Suppose 𝐹𝐹 ∈ ℱ and 𝜏𝜏 > 0 such that for any 𝑤𝑤, 𝜛𝜛 ∈ Η 

𝐴𝐴(Hw, Hw,Ηw, … ,Ηw,Ηϖ) > 0 ⇒ 

𝜏𝜏 + 𝐹𝐹(Hw, Hw,Ηw, … ,Ηw,Ηϖ) ≤ F(A(w, w, w, … , w,ω)) 

Then 𝐻𝐻 has a unique fixed point 𝑤𝑤∗ ∈ Η and for every 𝑤𝑤0 ∈ Η  the sequence {𝐻𝐻𝑤𝑤0
𝑛𝑛 } converges 

to 𝑤𝑤∗. 

Proof. Select 𝑤𝑤0 ∈ Η  express a sequence {𝑤𝑤𝑛𝑛}𝑛𝑛=1
∞  by  

𝑤𝑤1 = 𝐻𝐻𝑤𝑤0 , 𝑤𝑤2 = 𝐻𝐻𝑤𝑤1 =𝐻𝐻𝑤𝑤0
2  , … , 𝑤𝑤𝑛𝑛+1 = 𝐻𝐻𝑛𝑛 = 𝐻𝐻𝑤𝑤0

𝑛𝑛+1 for each 𝑛𝑛 ∈ 𝑁𝑁. 

If there is 𝑛𝑛 ∈ 𝑁𝑁 such that 𝐴𝐴(𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, … , 𝑤𝑤𝑛𝑛, 𝐻𝐻𝑤𝑤𝑛𝑛 ) = 0 the proof is concluded. Thus,we 
presume that for every 𝑛𝑛 ∈ 𝑁𝑁. 

0< 𝐴𝐴(𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, … , 𝑤𝑤𝑛𝑛, 𝐻𝐻𝑤𝑤𝑛𝑛) = 𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, … , 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛 ) 

For all 𝑛𝑛 ∈ 𝑁𝑁  , we attain 

𝜏𝜏 + 𝐹𝐹(𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, … , 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛 )) ≤ 𝐹𝐹(𝐴𝐴(𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛−1, … , 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛) , 

i.e., 

𝐹𝐹(𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, … , 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛 )) ) ≤ 𝐹𝐹(𝐴𝐴(𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛−1, … , 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛) − 𝜏𝜏 

Reapplying this method,we arrive at 

𝐹𝐹(𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, … , 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛 )) )                                                                      (2.3) 
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≤ 𝐹𝐹(𝐴𝐴(𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛−1, … , 𝑤𝑤𝑛𝑛−1, 𝑤𝑤𝑛𝑛) − 𝜏𝜏 

≤ 𝐹𝐹 (𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−2, 𝐻𝐻𝑤𝑤𝑛𝑛−2, 𝐻𝐻𝑤𝑤𝑛𝑛−2, … , 𝐻𝐻𝑤𝑤𝑛𝑛−2, 𝐻𝐻𝑤𝑤𝑛𝑛−1)) − 𝜏𝜏 

≤  𝐹𝐹 (𝐴𝐴((𝑤𝑤𝑛𝑛−2, 𝑤𝑤𝑛𝑛−2, 𝑤𝑤𝑛𝑛−2, … , 𝑤𝑤𝑛𝑛−2, 𝑤𝑤𝑛𝑛−1))) − 2𝜏𝜏 

≤ 𝐹𝐹 (𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−3, 𝐻𝐻𝑤𝑤𝑛𝑛−3, 𝐻𝐻𝑤𝑤𝑛𝑛−3, … , 𝐻𝐻𝑤𝑤𝑛𝑛−3, 𝐻𝐻𝑤𝑤𝑛𝑛−2)) − 2𝜏𝜏 

≤  𝐹𝐹 (𝐴𝐴((𝑤𝑤𝑛𝑛−3, 𝑤𝑤𝑛𝑛−3, 𝑤𝑤𝑛𝑛−3, … , 𝑤𝑤𝑛𝑛−3, 𝑤𝑤𝑛𝑛−2))) − 3𝜏𝜏 

≤ 𝐹𝐹 (𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−4, 𝐻𝐻𝑤𝑤𝑛𝑛−4, 𝐻𝐻𝑤𝑤𝑛𝑛−4, … , 𝐻𝐻𝑤𝑤𝑛𝑛−4, 𝐻𝐻𝑤𝑤𝑛𝑛−3)) − 3𝜏𝜏 

. 

. 

. 

≤  𝐹𝐹 (𝐴𝐴((𝑤𝑤0, 𝑤𝑤0, 𝑤𝑤0, … , 𝑤𝑤0, 𝑤𝑤1))) −  𝑛𝑛𝑛𝑛 

Due to (2.3),we acquire lim
𝑛𝑛→∞

𝐹𝐹(𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, … , 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛 )) ) = −∞ which 

together with (𝐹𝐹2)′ and Lemma1 gives 

lim
𝑛𝑛→∞

𝐴𝐴(𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛−1, … , 𝐻𝐻𝑤𝑤𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝑛𝑛 ) = 0 

i.e., 

            lim
𝑛𝑛→∞

𝐴𝐴(𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, 𝑤𝑤𝑛𝑛, … , 𝑤𝑤𝑛𝑛, 𝐻𝐻𝑤𝑤𝑛𝑛) = 0                                           (2.4) 

   Next, we maintain that {𝑤𝑤𝑛𝑛}𝑛𝑛=1
∞  is a Cauchy sequence .Reasoning by contradiction, we 

presume that there exist  𝜀𝜀 > 0  and sequences  {𝜒𝜒𝑛𝑛}𝑛𝑛=1
∞ , {𝜗𝜗𝑛𝑛}𝑛𝑛=1

∞  ⊂ 𝑁𝑁 such that 

𝜒𝜒𝑛𝑛 > 𝜗𝜗𝑛𝑛 > 𝑛𝑛 for every 𝑛𝑛 ∈ 𝑁𝑁  . 

𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛) ≥∈                            (2.5) 

(𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜒𝜒𝑛𝑛−1, … , 𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜗𝜗𝑛𝑛) <∈                   (2.6) 

So we have 

∈≤ 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜗𝜗𝑛𝑛) 

  ≤ (𝑛𝑛 − 1)𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛, … , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛−1) + 𝐴𝐴(𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, … , 𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛−1) 

  = (𝑛𝑛 − 1)𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛−1) + 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜒𝜒𝑛𝑛−1, … , 𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜗𝜗𝑛𝑛) 

  ≤ (𝑛𝑛 − 1)𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛, … , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛−1)+∈ 
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  ≤ (𝑛𝑛 − 1)𝐴𝐴 (𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝑤𝑤𝜒𝜒𝑛𝑛−1, … , 𝑤𝑤𝜒𝜒𝑛𝑛−1, 𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛−1
) +∈ 

It follow from (2.4) and last sentences 

lim
𝑛𝑛→∞

𝐴𝐴( 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜗𝜗𝑛𝑛) = 𝜀𝜀                                                    (2.7) 

On the other hand from (2.4)  there is 𝑁𝑁 ∈ ℕ  such that 

𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛, 𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛
) < 𝜀𝜀

4(𝑛𝑛−1)                                                   (2.8) 

𝐴𝐴(𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, … , 𝑤𝑤𝜗𝜗𝑛𝑛, 𝐻𝐻𝑤𝑤𝜗𝜗𝑛𝑛
) < 𝜀𝜀

4 ,                                                        (2.9)                   
∀𝜒𝜒 > 𝜗𝜗. 

Next we affirm that for any ∀𝜒𝜒 > 𝜗𝜗 

𝐴𝐴 (𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛
, 𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛

𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛
, … , 𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛

, 𝐻𝐻𝑤𝑤𝜗𝜗𝑛𝑛
) = 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜒𝜒𝑛𝑛+1, … , 𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜗𝜗𝑛𝑛+1) > 0    ∀𝑛𝑛 ≥

𝑁𝑁                                                                                (2.10) 

Arguing by contradiction there exist ℳ ≥ 𝑁𝑁 such that 

𝐴𝐴(𝑤𝑤𝜒𝜒ℳ+1, 𝑤𝑤𝜒𝜒ℳ+1, 𝑤𝑤𝜒𝜒ℳ+1, … , 𝑤𝑤𝜒𝜒ℳ+1, 𝑤𝑤𝜗𝜗ℳ+1) = 0                  (2.11) 

It follows from (2.5), (2.6), (2.8), (2.9) and (2.11) that 

𝜀𝜀 ≤ 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜗𝜗𝑛𝑛) 

   ≤ (𝑛𝑛 − 1)𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛+1) +  𝐴𝐴(𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, … , 𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛+1) 

   ≤ (𝑛𝑛 − 1)𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛+1) + 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜒𝜒𝑛𝑛+1𝑤𝑤𝜒𝜒𝑛𝑛+1, … , 𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜗𝜗𝑛𝑛) 

   ≤ (𝑛𝑛 − 1)𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛+1) + (𝑛𝑛 −
1) 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜒𝜒𝑛𝑛+1𝑤𝑤𝜒𝜒𝑛𝑛+1, … , 𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜗𝜗𝑛𝑛+1)    +𝐴𝐴(𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛, … , 𝑤𝑤𝜗𝜗𝑛𝑛, 𝑤𝑤𝜗𝜗𝑛𝑛+1)  

   ≤ (𝑛𝑛 − 1)𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛 , … , 𝑤𝑤𝜒𝜒𝑛𝑛, 𝑤𝑤𝜒𝜒𝑛𝑛+1) + (𝑛𝑛 −
1) 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜒𝜒𝑛𝑛+1𝑤𝑤𝜒𝜒𝑛𝑛+1, … , 𝑤𝑤𝜒𝜒𝑛𝑛+1, 𝑤𝑤𝜗𝜗𝑛𝑛+1)      +𝐴𝐴( 𝑤𝑤𝜗𝜗𝑛𝑛+1, 𝑤𝑤𝜗𝜗𝑛𝑛+1, 𝑤𝑤𝜗𝜗𝑛𝑛+1, … , 𝑤𝑤𝜗𝜗𝑛𝑛+1, 𝑤𝑤𝜗𝜗𝑛𝑛) 

≤ 𝜀𝜀
4 + 0 + 𝜀𝜀

4 

This contradiction established the relation (2.10).Consequently, it can be inferred from (2.10) 
and the hypothesis of the theorem that 

𝜏𝜏 + 𝐴𝐴 (𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛
, 𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛

𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛
, … , 𝐻𝐻𝑤𝑤𝜒𝜒𝑛𝑛

, 𝐻𝐻𝑤𝑤𝜗𝜗𝑛𝑛
) ≤ 𝐴𝐴(𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜒𝜒𝑛𝑛, … , 𝑤𝑤𝜒𝜒𝑛𝑛 , 𝑤𝑤𝜗𝜗𝑛𝑛)     ∀𝑛𝑛 ∈ 𝑁𝑁 

From (𝐹𝐹3′, (2.7) and (2.12) we gather 𝜏𝜏 + 𝐹𝐹(𝜀𝜀) ≤ 𝐹𝐹(𝜀𝜀). This contradiction 
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shows that {𝑤𝑤𝑛𝑛}𝑛𝑛=1
∞ is a Cauchy sequence. Owing to completeness of (Η, 𝐴𝐴) , {𝑤𝑤𝑛𝑛}𝑛𝑛=1

∞  converges 
the some point 𝑤𝑤 in Η. Finally, the continuity of 𝐻𝐻 yields. 

𝐴𝐴(𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, … , 𝐻𝐻𝑤𝑤, 𝑤𝑤) = lim
𝑛𝑛→∞

(𝐻𝐻𝜒𝜒𝑛𝑛 , 𝐻𝐻𝜒𝜒𝑛𝑛 , 𝐻𝐻𝜒𝜒𝑛𝑛 , … , 𝐻𝐻𝜒𝜒𝑛𝑛 , 𝜒𝜒𝑛𝑛) 

 = lim
𝑛𝑛→∞

(𝜒𝜒𝑛𝑛+1 , 𝜒𝜒𝑛𝑛+1, 𝜒𝜒𝑛𝑛+1, … , 𝜒𝜒𝑛𝑛+1, 𝜒𝜒𝑛𝑛) 

 =𝐴𝐴(𝑤𝑤∗, 𝑤𝑤∗, 𝑤𝑤∗, … , 𝑤𝑤∗, 𝑤𝑤∗) 

At this point, let us illustrate that 𝐻𝐻 possesses at most one xed point. In fact, if 𝑤𝑤, 𝜛𝜛 ∈ Η be to 
distinctive xed points of 𝐻𝐻, namely, 𝐻𝐻𝑤𝑤 = 𝑤𝑤 ≠ 𝜛𝜛 = 𝐻𝐻𝜛𝜛  

Therefore 

𝐴𝐴(𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, … , 𝐻𝐻𝑤𝑤, 𝐻𝐻𝜛𝜛) = 𝐴𝐴(𝑤𝑤, 𝑤𝑤, 𝑤𝑤, … , 𝑤𝑤, 𝜛𝜛) > 0 

then we get 

𝐹𝐹(𝐴𝐴(𝑤𝑤, 𝑤𝑤, 𝑤𝑤, … , 𝑤𝑤, 𝜛𝜛)) = F(𝐴𝐴(𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, … , 𝐻𝐻𝑤𝑤, 𝐻𝐻𝜛𝜛)) 

                                                                     < 𝜏𝜏 +  F(𝐴𝐴(𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, 𝐻𝐻𝑤𝑤, … , 𝐻𝐻𝑤𝑤, 𝐻𝐻𝜛𝜛)) 

                                                                     ≤ 𝐹𝐹(𝐴𝐴(𝑤𝑤, 𝑤𝑤, 𝑤𝑤, … , 𝑤𝑤, 𝜛𝜛)) 

which is a contradiction. Thereof, the xed point is a unique. 
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Abstract  

In this writing, we investigate fixed points of 𝐹𝐹 −contraction in an abstract space. Additionally, 
the effectiveness of our work is confirmed through appropriate examples. 

Keywords: 𝑆𝑆 −metric space; Fixed point; 𝐹𝐹 −contraction. 

1.INTRODUCTION 

 The Banach contraction principle (BCP) [1] is widely regarded as one of the most significant results 
in metric fixed point theory, largely due to its simplicity and the practicality with which it can be 
applied across various mathematical disciplines. Over time, the BCP has undergone a variety of 
generalizations in different directions. Recently, Sedghi et al [13] introduced the concept of 
𝑆𝑆 −metric space which is different from other space and proved fixed point theorems in 𝑆𝑆 −metric 
space. They also gives some examples of 𝑆𝑆 − metric spaces which shows that 𝑆𝑆 −metric space is 
different form other spaces. In this article, we will denote by ℕ the set of all natural numbers, by ℝ 
the set of all real numbers, and by ℝ+ the set of all positive real numbers. The famous European 
mathematician Stefan Banach proved a theorem in 1922, which was a great first. Since the day he 
proved his theorem, scientists have been publishing studies on contraction mappings and metric 
spaces. Important works on 𝑆𝑆 −metric spaces are the papers of S. Sedghi. [13] 
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generalizations in different directions. Recently, Sedghi et al [13] introduced the concept of 
𝑆𝑆 −metric space which is different from other space and proved fixed point theorems in 𝑆𝑆 −metric 
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spaces. Important works on 𝑆𝑆 −metric spaces are the papers of S. Sedghi. [13] 

2 

2.GENERAL PROPERTIES OF METHOD 

Theorem 1: Let (Μ, ds)  be a complete 𝑆𝑆 −metric space and consider a mapping 
θ: Μ → Μ. Assume that for all η, µ ∈ Μ with  η ≠ µ, the condition 

                             ds(θη, θη, θη) < ds(η, η, µ)  

holds. Then, the mapping θ possesses a unique fixed point in Μ.  

In 2008, Suzuki [2] provided generalized versions of Edelstein's results in the context of 
complete 𝑆𝑆 −metric spaces.  

Theorem 2: Let (Μ, ds) be a complete S−metric space, and let θ: Μ → Μ be a 
self−mapping. Suppose that for all η, µ ∈ Μ with η ≠ µ, 

    12 ds(η, η, θη) < ds(η, η, µ) ⇒ ds(θη, θη, θμ) < ds(η, η, µ) then θ has a unique  

fixed point in Μ. 

In 2012, Wardowski [11] introduced a novel class of contraction mappings, known as F-
contractions, and established a new fixed point theorem related to them. Through this 
contribution, Wardowski [11] offered a new perspective on the Banach contraction 
principle, distinct from the classical formulations found in the literature. The concept of 
F-contraction proposed by Wardowski is defined the as follows. 
 
Definition 1. Let 𝑋𝑋 be a non-empty set and let ds: 𝑋𝑋3 → [0, ∞)  For all ∀𝜂𝜂, 𝜇𝜇, 𝜉𝜉, 𝑡𝑡 ∈ 𝑋𝑋 
let 𝑆𝑆 be a function satisfying the following conditions: 
1−) ds(𝜂𝜂, 𝜇𝜇, 𝜉𝜉) ≥ 0,
2−) ds(𝜂𝜂, 𝜇𝜇, 𝜉𝜉) = 0 ⟺  𝜂𝜂 = 𝜇𝜇 = 𝜉𝜉
3−) ds(𝜂𝜂, 𝜇𝜇, 𝜉𝜉) ≤ 𝑆𝑆(𝜂𝜂, 𝜂𝜂, 𝑡𝑡) + 𝑆𝑆(𝜇𝜇, 𝜇𝜇, 𝑡𝑡) + 𝑆𝑆(𝜉𝜉, 𝜉𝜉, 𝑡𝑡).
In this case, ds is called an 𝑆𝑆 −metric on 𝑋𝑋, and the pair (𝑋𝑋, ds) is called an 𝑆𝑆 −metric 
space. 

Definition 2: Let (Μ, ds) be a S-metric space. A mapping θ: Μ → Μ is said to be an 
F −contraction if there exists λ > 0 such that ∀η, µ ∈ Μ,   

 
 

ds(θη, θη, θμ) > 0 ⇒  λ + F (ds(θη, θη, θμ)) 
 

≤ F(ds(η, η, µ))                                    (𝟏𝟏)

where F: ℝ+ → ℝ is a mapping satisfying the following conditions: 

(F1) F is strictly increasing, i.e. for all η, µ ∈ ℝ+ such that η <  µ, F(η) < F(µ); 
                         

 (F2) For each sequence {ηn}n=1
∞  of positive numbers, limn→∞(ηn) = 0 if and only if  
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limn→∞ F(ηn) = −∞; 

 
(F3) There exist k ∈ (0,1) such that limη→∞ ηk . F(η) = 0 
        

We denote by ℱ, the set of all functions satisfying the conditions (F1)-(F3). For examples of the 
function F the reader is referred to [12] and [11]. 
 
Remark 1: Based on conditions (F1) and (1), it is straightforward to deduce that every 
𝐹𝐹 −contraction is necessarily a continuous function. 
 
Theorem 3:  Let (Μ, ds)  be a complete S−metric space and suppose  let θ: Μ → Μ 
is an F −contraction. Then θ possesses a unique fixed point η∗ ∈ Μ,  and for any point 
η ∈ Μ  the sequence {ηn}n∈ℕ

∞  converges to η∗ . Recently, Secelean [12] presented the 
following results: 

 

Lemma 1: Let F: ℝ+ → ℝ be an increasing function,  and let  {ηn}n=1
∞   be a sequence of positive 

real numbers.  
 

Then the following statements are true: 

(a) if  limn→∞F(ηn)  = −∞, then limn→∞ηn = 0 

 
(b) if  inf F = −∞, and limn→∞ηn = 0 then limn→∞F(ηn) = −∞. 

Using Lemma 1, Secelean demonstrated that the condition (F2) from Definition 2 can be 
equivalently replaced with a simpler condition: 

(F2´) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −∞  

or also,by 
 
(F2´´) There exist a sequence  {ηn}n=1

∞   positive 
real numbers such that  
      

Remark 2: Define F: ℝ+ →  ℝ by Fμ(η) = ln η. In this setting, Fμ belongs to the 
class ℱ. Notice that whan F = Fμ, the corresponding F -contraction coincides with the 
classical Banach contraction. Consequently, every Banach contraction is a particular case 
of an F -contractions. Nevertheless, there are also F -contractions that lie outside the 
Banach framework (see [11],[12]). 
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real numbers.  
 

Then the following statements are true: 
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(F2´´) There exist a sequence  {ηn}n=1
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real numbers such that  
      

Remark 2: Define F: ℝ+ →  ℝ by Fμ(η) = ln η. In this setting, Fμ belongs to the 
class ℱ. Notice that whan F = Fμ, the corresponding F -contraction coincides with the 
classical Banach contraction. Consequently, every Banach contraction is a particular case 
of an F -contractions. Nevertheless, there are also F -contractions that lie outside the 
Banach framework (see [11],[12]). 
 

Rather than imposing condition (F3) from Definition 2, we replace it here with the 
following simpler requirement: 

 
(F3´) F is continuous on (0,∞). 

We let ℑ denote the family of all functions satisfying (F1), (F2´), and (F3´). 
Example 1:  Consider the functions F 1 (η) = (−1)/η,   F 2 (η) = (−1)/η + η,  
F 3 (η) = (1/1 − eη),  F 4 (η) = (1/eη − e−η). Then it follows that F1, F2, F3, F4 ∈ ℱ. 

   Remark 3:  It should be noted that the condition (F3) and (F3´) are not dependent on 
one another. 
For istance, for 𝑝𝑝 ≥ 1, the function F(η) = −1/η𝑝𝑝 satisfies the conditions (F1) and 
(F2), yet does not satisfy (F3); thus, ℑ ⊈ ℱ. Alternatively  
F(η) = −1/(η + [η])𝑡𝑡,  where [η] denotes the greatest integer less than or equal to η, 
and 𝑡𝑡 ∈ (0,1/𝑛𝑛). Fo r  η > 1,  t h i s  f u n c t i o n  m e e t s  t h e  c r i t e r i a  (F1) and (F2) 
but fails to meet (F3);  n o n e t h e l e s s , it satisfies (F3´), while it satisfies the condition 
(F3) for any 𝑘𝑘 ∈ (1/𝜂𝜂, 1). Therefore, ℱ ⊈ ℑ. Also, if we take  
F (η) = lnη, then 𝐹𝐹 ∈ ℱ and 𝐹𝐹 ∈ ℑ. Therefore, ℱ ∩ ℑ ≠ ∅. 

Motivated by Remark 3, we reformulate Wardowski’s result [11] by allowing the 
contraction to involve functions 𝐹𝐹  from the class ℑ reather than 𝐹𝐹 ∈ ℱ. W e then 
introduce the notion of an  𝐹𝐹 -Suzuki contraction and state a corresponding variant 
of  Theorem 3. 

 
Definition 3: Let (Μ, ds) be an 𝑆𝑆 −metric space. A mapping θ: Μ → Μ is called an F -
Suzuki contraction if there exists a constant 𝜆𝜆 > 0 such that for all 𝜂𝜂, µ ∈ Μ with 𝜃𝜃𝜂𝜂 ≠
𝜃𝜃µ implication 

     1/2. ds(𝜂𝜂, 𝜂𝜂, 𝜃𝜃𝜂𝜂) < ds(𝜂𝜂, 𝜂𝜂, µ) ⇒ 𝜆𝜆 + 𝐹𝐹(ds(𝜃𝜃𝜂𝜂, 𝜃𝜃𝜂𝜂, 𝜃𝜃µ))  ≤ 𝐹𝐹(ds(𝜂𝜂, 𝜂𝜂, µ)), 

 holds, where 𝐹𝐹 ∈ ℑ. 
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3.APPLICATIONS 

Example 2 :  Given  Μ = (0, ∞) let 
 
 

ds(η, μ, ζ) = |η − μ| + |μ − ζ| + |ζ − η|,        ∀ η, μ, ζ ∈ Μ
 
and  

θ(η) = ln(η + 2)

F(t) = t
5

ds(θη, θη, θμ) > 0 ⇒ 𝜆𝜆 + 𝐹𝐹(ds(θη, θη, θμ)) ≤ 𝐹𝐹(ds(η, η, μ)),                𝜆𝜆 > 0

θ(η) = ln(η + 2)

θ(μ) = ln(μ + 2)      η, μ ∈ Μ

ds(θη, θη, θμ) = |ln(η + 2) − ln(μ + 2)| + |ln(μ + 2) − ln(η + 2)|

= 2. |ln(η + 2) − ln(μ + 2)|

ds(η, η, μ) = |η − μ| + |μ − η|

= 2. |η − μ|
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3.APPLICATIONS 

Example 2 :  Given  Μ = (0, ∞) let 
 
 

ds(η, μ, ζ) = |η − μ| + |μ − ζ| + |ζ − η|,        ∀ η, μ, ζ ∈ Μ
 
and  

θ(η) = ln(η + 2)

F(t) = t
5

ds(θη, θη, θμ) > 0 ⇒ 𝜆𝜆 + 𝐹𝐹(ds(θη, θη, θμ)) ≤ 𝐹𝐹(ds(η, η, μ)),                𝜆𝜆 > 0

θ(η) = ln(η + 2)

θ(μ) = ln(μ + 2)      η, μ ∈ Μ

ds(θη, θη, θμ) = |ln(η + 2) − ln(μ + 2)| + |ln(μ + 2) − ln(η + 2)|

= 2. |ln(η + 2) − ln(μ + 2)|

ds(η, η, μ) = |η − μ| + |μ − η|

= 2. |η − μ|

F(ds(η, η, μ)) = 2
5 |η − μ|

F(ds(θη, θη, θμ)) = 2
5 |ln(η + 2) − ln(μ + 2)|

𝜆𝜆 + 2
5 |ln(η + 2) − ln(μ + 2)| ≤ 2

5 |η − μ|

𝜆𝜆 > 0

η∗

θ(η) = ln(η + 2)

η∗

ln(η∗ + 2) = η∗ ⇒ (η∗ + 2) = 𝑒𝑒η∗ 

η∗ = 1,146.

Let’s define an array with initial value η0 > 0

ηn+1 = θ(ηn)
= ln(ηn + 2).

η1 = ln(η0 + 2)
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η2 = ln(η1 + 2) = ln (ln(η0 + 2) + 2)

η3 = ln(η2 + 2) = ln (ln(ln(η0 + 2)) + 2)

⋮

ln(η + 2) = η
η > 0 η∗

4.CONCLUSIONS 

Theorem 3: Let Μ be a complete 𝑆𝑆 −metric space. Suppose θ: Μ → Μ is a 𝐹𝐹 −contraction 
assume 𝐹𝐹 ∈ ℱ and there exist 𝜆𝜆 > 0 such that for, 

 
∀𝜂𝜂, µ ∈ Μ, [ds(𝜃𝜃𝜂𝜂, 𝜃𝜃𝜂𝜂, 𝜃𝜃µ) > 0 ⇒ 𝜆𝜆 + 𝐹𝐹(ds(𝜃𝜃𝜂𝜂, 𝜃𝜃𝜂𝜂, 𝜃𝜃µ)) ≤ 𝐹𝐹(ds(𝜂𝜂, 𝜂𝜂, µ))] 

 
Then θ has a unique fixed point 𝜂𝜂∗ ∈ Μ and for every 𝜂𝜂0 ∈ Μ the sequence {𝜃𝜃nη0}n=0

∞  convers  to 
𝜂𝜂∗.     

 
 
 

Proof: Choose 𝜂𝜂0 ∈ Μ and define a sequence 
  
η1= 𝜃𝜃η0, η2 = 𝜃𝜃η 1  =𝜃𝜃2η0, ... 
 
ηn+1=𝜃𝜃ηn=𝜃𝜃𝑛𝑛+1η0        ∀n ∈ ℕ                                 (𝟐𝟐)   
 

In the context of the S-metric space when ds(ηn, ηn, ηn+1) > 0 the given condition 
 

𝜆𝜆 + 𝐹𝐹(ds(ηn, ηn, ηn+1)) ≤ 𝐹𝐹((ds(ηn, ηn, ηn+1))  
 

holds for a chosen 𝜆𝜆 > 0. 
 
      This satisfies the definition of an 𝑆𝑆 −metric space, implying that there exist a uniqe 
fixed point 𝜂𝜂∗ ∈ Μ for the mapping  𝜃𝜃, and for every η0 ∈ Μ the sequence {θ𝜂𝜂0}n=0

∞  
converges to 𝜂𝜂∗. 

If there exist n ∈ ℕ such that ds(ηn, ηn, θηn) = 0 the proof is complete so we assume that  
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η2 = ln(η1 + 2) = ln (ln(η0 + 2) + 2)

η3 = ln(η2 + 2) = ln (ln(ln(η0 + 2)) + 2)

⋮

ln(η + 2) = η
η > 0 η∗

4.CONCLUSIONS 

Theorem 3: Let Μ be a complete 𝑆𝑆 −metric space. Suppose θ: Μ → Μ is a 𝐹𝐹 −contraction 
assume 𝐹𝐹 ∈ ℱ and there exist 𝜆𝜆 > 0 such that for, 

 
∀𝜂𝜂, µ ∈ Μ, [ds(𝜃𝜃𝜂𝜂, 𝜃𝜃𝜂𝜂, 𝜃𝜃µ) > 0 ⇒ 𝜆𝜆 + 𝐹𝐹(ds(𝜃𝜃𝜂𝜂, 𝜃𝜃𝜂𝜂, 𝜃𝜃µ)) ≤ 𝐹𝐹(ds(𝜂𝜂, 𝜂𝜂, µ))] 

 
Then θ has a unique fixed point 𝜂𝜂∗ ∈ Μ and for every 𝜂𝜂0 ∈ Μ the sequence {𝜃𝜃nη0}n=0

∞  convers  to 
𝜂𝜂∗.     
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ηn+1=𝜃𝜃ηn=𝜃𝜃𝑛𝑛+1η0        ∀n ∈ ℕ                                 (𝟐𝟐)   
 

In the context of the S-metric space when ds(ηn, ηn, ηn+1) > 0 the given condition 
 

𝜆𝜆 + 𝐹𝐹(ds(ηn, ηn, ηn+1)) ≤ 𝐹𝐹((ds(ηn, ηn, ηn+1))  
 

holds for a chosen 𝜆𝜆 > 0. 
 
      This satisfies the definition of an 𝑆𝑆 −metric space, implying that there exist a uniqe 
fixed point 𝜂𝜂∗ ∈ Μ for the mapping  𝜃𝜃, and for every η0 ∈ Μ the sequence {θ𝜂𝜂0}n=0

∞  
converges to 𝜂𝜂∗. 

If there exist n ∈ ℕ such that ds(ηn, ηn, θηn) = 0 the proof is complete so we assume that  

0 < ds(ηn, ηn, θηn) = ds (θηn−1, θηn−1, θηn) ∀n ∈ ℕ              (𝟑𝟑)  
for any n ∈ ℕ we have 

                             𝜆𝜆 + 𝐹𝐹(ds(θηn−1, θηn−1, θηn)) ≤ ds(ηn−1, ηn−1, ηn) 
 i.e 

𝐹𝐹(ds(θηn−1, θηn−1, θηn)) ≤ ds(ηn−1, ηn−1, ηn)  −  𝜆𝜆 
 

Repeating this process we get ; 

𝐹𝐹(ds(θηn−1, θηn−1, θηn)) ≤ 𝐹𝐹(ds(ηn−1, ηn−1, ηn)) − 𝜆𝜆 
= 𝐹𝐹(ds(θηn−2, θηn−2, θηn−1)) − 𝜆𝜆 
≤ 𝐹𝐹(ds(ηn−2, ηn−2, ηn−1)) − 2𝜆𝜆 
= 𝐹𝐹(ds(θηn−3, θηn−3, θηn−2)) − 2𝜆𝜆 
≤ 𝐹𝐹(ds(ηn−3, ηn−3, ηn−2)) − 3𝜆𝜆 

. 

. 

. 

F(ds(η0, η0, η1)) − nλ.                        (𝟒𝟒) 

 
from (4) we obtain lim

n→∞
𝐹𝐹(ds(θηn−1, θηn−1, θηn)) = −∞, which together with (F2´) and lemma 1 

gives, 

lim
n→∞

𝐹𝐹(ds(θηn−1, θηn−1, θηn)) ≠ 0 

i.e 

 
                     lim

n→∞
(ds(ηn, ηn, θηn)) = 0. 

 
 

Now we claim that {𝜂𝜂n}n=0
∞   is a cauchy sequence. Arguing by contradiction,    

we assume that there exist 𝜀𝜀 > 0 and sequences {𝜌𝜌(n)}n=1
∞  and {𝜔𝜔(n)}n=1

∞  of natural numbers  
 
such that 

 
𝜌𝜌(n) > 𝜔𝜔(n)  > n, ds(η𝜌𝜌(n), η𝜌𝜌(n), η𝜔𝜔(n)) ≥ 0, ds(η𝜌𝜌(n)−1, η𝜌𝜌(n)−1, η𝜔𝜔(n)) < 𝜀𝜀    

(6)  



32 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

so, we have 

𝜀𝜀 ≤ ds(η𝜌𝜌(n), η𝜌𝜌(n), η𝜔𝜔(n)) 
≤ ds(η𝜌𝜌(n), η𝜌𝜌(n), η𝜌𝜌(n)−1) + ds(η𝜌𝜌(n)−1, η𝜌𝜌(n)−1, η𝜔𝜔(n))     

 

≤ ds(η𝜌𝜌(n), η𝜌𝜌(n), η𝜌𝜌(n)−1) + 𝜀𝜀
= ds(η𝜌𝜌(n)−1, η𝜌𝜌(n)−1, 𝜃𝜃𝜃𝜃𝜌𝜌(n)−1) + 𝜀𝜀 

 

It follows from (5) and the above inequality that, 

 
  lim

𝑛𝑛→∞
ds(η𝜌𝜌(n), η𝜌𝜌(n), η𝜔𝜔(n)) = 𝜀𝜀 (7) 

 
On the other hand, from (5) there exists 𝑁𝑁 ∈ ℕ, such that 

 
ds(η𝜌𝜌(n), η𝜌𝜌(n), 𝜃𝜃𝜃𝜃𝜌𝜌(n)) < 𝜀𝜀

4  
and 
 

ds(η𝜔𝜔(n), η𝜔𝜔(n), 𝜃𝜃𝜂𝜂𝜔𝜔(n)) < 𝜀𝜀
4    ∀n ≥ 𝑁𝑁.            (𝟖𝟖) 

Next, we claim that 
  

ds(𝜃𝜃η𝜌𝜌(n), 𝜃𝜃η𝜌𝜌(n), 𝜃𝜃𝜃𝜃𝜌𝜌(n))= ds(η𝜌𝜌(n)+1, η𝜌𝜌(n)+1, η𝜔𝜔(n)+1) > 0       ∀n ∈ 𝑁𝑁.                              (𝟗𝟗)  

 

Arguing by contradiction, there exists m ≥ 𝑁𝑁 such that 
 

ds(η𝜌𝜌(m)+1, η𝜌𝜌(m)+1, η𝜔𝜔(m)+1) = 0                                                            (𝟏𝟏𝟏𝟏) 
 
It follows from (6), (8), and (10) that, 
 

 ε ≤ ds(η𝜌𝜌(m), η𝜌𝜌(m), η𝜔𝜔(m)) 
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ds(η𝜌𝜌(n), η𝜌𝜌(n), 𝜃𝜃𝜃𝜃𝜌𝜌(n)) < 𝜀𝜀

4  
and 
 

ds(η𝜔𝜔(n), η𝜔𝜔(n), 𝜃𝜃𝜂𝜂𝜔𝜔(n)) < 𝜀𝜀
4    ∀n ≥ 𝑁𝑁.            (𝟖𝟖) 

Next, we claim that 
  

ds(𝜃𝜃η𝜌𝜌(n), 𝜃𝜃η𝜌𝜌(n), 𝜃𝜃𝜃𝜃𝜌𝜌(n))= ds(η𝜌𝜌(n)+1, η𝜌𝜌(n)+1, η𝜔𝜔(n)+1) > 0       ∀n ∈ 𝑁𝑁.                              (𝟗𝟗)  

 

Arguing by contradiction, there exists m ≥ 𝑁𝑁 such that 
 

ds(η𝜌𝜌(m)+1, η𝜌𝜌(m)+1, η𝜔𝜔(m)+1) = 0                                                            (𝟏𝟏𝟏𝟏) 
 
It follows from (6), (8), and (10) that, 
 

 ε ≤ ds(η𝜌𝜌(m), η𝜌𝜌(m), η𝜔𝜔(m)) 

≤ ds(η𝜌𝜌(m), η𝜌𝜌(m), η𝜌𝜌(m)+1) + ds(η𝜌𝜌(m)+1, η𝜌𝜌(m)+1, η𝜔𝜔(m))
≤ ds(η𝜌𝜌(m), η𝜌𝜌(m), η𝜌𝜌(m)+1) + ds(η𝜌𝜌(m)+1, η𝜌𝜌(m)+1, η𝜔𝜔(m)+1)
+ ds(η𝜔𝜔(m)+1, η𝜔𝜔(m)+1, η𝜔𝜔(m))
= ds(η𝜌𝜌(m), η𝜌𝜌(m), 𝜃𝜃𝜃𝜃𝜌𝜌(m)) + ds(η𝜌𝜌(m)+1, η𝜌𝜌(m)+1, 𝜂𝜂𝜔𝜔(m)+1)
+ ds(η𝜔𝜔(m), η𝜔𝜔(m), θη𝜔𝜔(m)) 

< 𝜀𝜀
4 + 0 + 𝜀𝜀

4 

= 𝜀𝜀
2 

 
This contradiction establishes the realition (9). Therefore, it follows from (9) and the 
assumption of the theorem that  

 
𝜆𝜆 + F(ds(𝜃𝜃η𝜌𝜌(n), 𝜃𝜃η𝜌𝜌(n), 𝜃𝜃𝜃𝜃𝜔𝜔(n))) ≤ F(ds(η𝜌𝜌(n), η𝜌𝜌(n), 𝜂𝜂𝜔𝜔(n)))     ∀n ∈ 𝑁𝑁                   (𝟏𝟏𝟏𝟏) 

From condition (F3´), e q u a t i o n  (7), and rela t ion (11), i t  f o l l o w s  tha t  

𝜆𝜆 + 𝐹𝐹(𝜀𝜀) ≤ 𝐹𝐹(𝜀𝜀). 

Which leads to a contradiction. 

This result confirms that the sequence {𝜂𝜂𝑛𝑛}𝑛𝑛=1
∞  is a Cauchy sequence. Due to the completeness of the 

space (Μ, d𝑠𝑠), the sequence {𝜂𝜂𝑛𝑛}𝑛𝑛=1
∞  converges to a point 𝜂𝜂 ∈ Μ. By the continuity of the mapping 

θ, we obtain the following: 
 

ds(θη, θη, η) = lim
n→∞

ds(θηn, θηn, ηn) 
= lim

n→∞
ds(ηn+1, ηn+1, ηn) = ds(η∗, η∗, η∗) = 0
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        Now we demonstrate that the mapping θ admits at most one fixed point. Suppose for the 
sake of contradiction, that there exist 𝜂𝜂, µ ∈ Μ such that they are two distinct fixed points of θ, 
meaning, , θη = η ≠ μ = θμ. Therefore, 

d𝑠𝑠(θη, θη, θµ)  = d𝑠𝑠(η, η, µ) > 0, 

then we get, which is a contradiction 

 
F(d𝑠𝑠(η, η, µ)) =  F(d𝑠𝑠(θη, θη, θµ)) 

<  λ +  F (d𝑠𝑠(θη, θη, θµ)) 
≤  F (d𝑠𝑠(η, η, µ)), 

which is a contradiction. Therefore, the fixed point is unique. 
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Abstract  

Fractional calculus operators deal with investigatin and applications of integrals and 

derivatives of arbitrary (real or complex) order. There are many definitions of fractional integral 

and fractional derivatives of different types. Object of this talk is to present an introductory 

overview of the theory of  an integral operator of fractional calculus known as generalized 

proportional fractional integral. We also show a fractional integral inequality whose proof based 

on techniques to the existing literature. 

Keywords: Generalized proportional fractional integral; Inequality; Operator. 

1.INTRODUCTION 

Fractional calculus was developed as a generalization (extension ) of the classical calculus, in 

which both integrals and derivatives order can take real or complex number. Fractional integrals and 

derivatives are important since they have many application in science and technology. In particularly, 

fractional  operators are excellent tools to use in modeling long-memory processes and many 

phenomena that appear in physics, chemistry, electricity, mechanics and many other disciplines. Since 

there are several reasons which lead to the fractional-order models, in the literature, there are many 

fractional operators. A very important form of fractional integral is given by the Riemann - Liouville 

integral. For a integrable function g: [a, b] → ℝ, of order δ ∈ (0, ∞), left Riemann – Liouville 

fractional  integral is given as 

𝐼𝐼𝑎𝑎+
𝛿𝛿 𝑔𝑔(𝑥𝑥) = 1

Γ(𝛿𝛿) ∫(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1
𝑥𝑥

𝑎𝑎
𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑   𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] 

and right Riemann – Liouville fractional  integral is given as 

𝐼𝐼𝑏𝑏−𝛿𝛿 𝑔𝑔(𝑥𝑥) = 1
Γ(𝛿𝛿) ∫(𝑡𝑡 − 𝑥𝑥)𝛿𝛿−1

𝑏𝑏

𝑥𝑥
𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑   𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]. 

Here Γ(𝛿𝛿)   is the well-known gamma function given by 
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Γ(𝛿𝛿) = ∫ 𝜏𝜏𝛿𝛿−1
∞

0
𝑒𝑒−𝜏𝜏𝑑𝑑𝑑𝑑. 

 

2.GENERAL PROPERTIES OF METHOD 

Let δ ∈ (0, ∞) be the order, 𝑝𝑝 ∈ (0,1] be proportion. For a integrable function 
g: [a, b] → ℝ,  the left generalized proportional fractional integral is given as 

 

𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝𝑔𝑔(𝑥𝑥) = 1

𝑝𝑝𝛿𝛿Γ(𝛿𝛿) ∫ 𝑒𝑒
𝑝𝑝−1

𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1
𝑥𝑥

𝑎𝑎

𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑  𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] 

and right generalized proportional fractional integral is given as 
 

𝐼𝐼𝑏𝑏−
𝛿𝛿,𝑝𝑝𝑔𝑔(𝑥𝑥) = 1

𝑝𝑝𝛿𝛿Γ(𝛿𝛿) ∫ 𝑒𝑒
𝑝𝑝−1

𝑝𝑝 (𝑡𝑡−𝑥𝑥)(𝑡𝑡 − 𝑥𝑥)𝛿𝛿−1
𝑏𝑏

𝑥𝑥

𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑  𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]. 

 
The left and right generalized proportional fractional integral is introduced by Jarad et al. in 
[3]. Given the function  𝑔𝑔: [3,7] → ℝ,  𝑔𝑔(𝑥𝑥) = ln(𝑥𝑥) the generalized proportional fractional 
integral of order √5 is given as 
 

𝐼𝐼3+
√5,𝑝𝑝 ln(𝑥𝑥) = 1

𝑝𝑝√5Γ(√5)
∫ 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)√5−1

𝑥𝑥

𝑎𝑎

ln(𝑡𝑡) 𝑑𝑑𝑑𝑑  𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]. 

 
More discussion on generalized proportional fractional calculus can be found in [1,2,4] 
 
Teorem 2.1. ([5]) Let a function 𝑔𝑔: [𝑎𝑎, 𝑏𝑏] → ℝ be decreasing, positive and continuous. Let 
𝑎𝑎 < 𝑥𝑥 ≤ 𝑏𝑏, 𝜃𝜃 > 0, 0 < 𝑘𝑘 ≤ 𝛽𝛽, 𝑝𝑝 ∈ (0,1] and 𝛿𝛿, 𝑠𝑠 ∈ (0, ∞). Then the left generalized 
proportional fractional integral satisfy 
 
 

𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+
𝑠𝑠,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)]
𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+

𝑠𝑠,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)]

≥ 1. 

 

3.APPLICATIONS 

Proof of the next theorem follows exactly the same line of reasoning as the proof  of 
[5]. The next lemma is actually implicit in [5]. 

Theorem 3.1. Let a function 𝑔𝑔: [𝑎𝑎, 𝑏𝑏] → ℝ be increasing, positive and continuous. Let 𝑎𝑎 <
𝑥𝑥 ≤ 𝑏𝑏, 𝜃𝜃 > 0, 0 < 𝑘𝑘 ≤ 𝛽𝛽, 𝑝𝑝 ∈ (0,1] and 𝛿𝛿, 𝑠𝑠 ∈ (0, ∞). Then the left generalized proportional 
fractional integral satisfy 
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𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+
𝑠𝑠,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)]
𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+

𝑠𝑠,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)]

≤ −1 

Proof   It's obvious that for 𝑡𝑡, 𝑦𝑦 ∈ [𝑎𝑎, 𝑥𝑥] we have 

((𝑦𝑦 − 𝑎𝑎)𝜃𝜃 − (𝑡𝑡 − 𝑎𝑎)𝜃𝜃) (𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) − 𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦)) ≤ 0                                                       (3.1) 

From (3.1) , we have 

(𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) + (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) − (𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) − (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) ≤ 0  (3,2) 

Define a function 𝐹𝐹 such that 

𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1.  

It's obvious that for each 𝑡𝑡 ∈ (𝑎𝑎, 𝑥𝑥), 𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏] then 𝐹𝐹(𝑥𝑥, 𝑡𝑡) > 0. Now if we multiply (3.1) by  

𝐹𝐹(𝑥𝑥, 𝑡𝑡)𝑔𝑔𝑘𝑘(𝑡𝑡) = 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)  

we obtain 

 

𝐹𝐹(𝑥𝑥, 𝑡𝑡)[(𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) + (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) − (𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦)
− (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡)]𝑔𝑔𝑘𝑘(𝑡𝑡) 

= (𝑦𝑦 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) 

+(𝑡𝑡 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) 

−(𝑦𝑦 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) 

−(𝑡𝑡 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) ≤ 0 

Now, integrating over (𝑎𝑎, 𝑥𝑥) with respect to 𝑡𝑡 we obtain  

(𝑦𝑦 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) ∫ 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝛽𝛽(𝑡𝑡)

𝑥𝑥

𝑎𝑎

𝑑𝑑𝑑𝑑 
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𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+
𝑠𝑠,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)]
𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+

𝑠𝑠,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)]

≤ −1 

Proof   It's obvious that for 𝑡𝑡, 𝑦𝑦 ∈ [𝑎𝑎, 𝑥𝑥] we have 

((𝑦𝑦 − 𝑎𝑎)𝜃𝜃 − (𝑡𝑡 − 𝑎𝑎)𝜃𝜃) (𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) − 𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦)) ≤ 0                                                       (3.1) 

From (3.1) , we have 

(𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) + (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) − (𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) − (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) ≤ 0  (3,2) 

Define a function 𝐹𝐹 such that 

𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1.  

It's obvious that for each 𝑡𝑡 ∈ (𝑎𝑎, 𝑥𝑥), 𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏] then 𝐹𝐹(𝑥𝑥, 𝑡𝑡) > 0. Now if we multiply (3.1) by  

𝐹𝐹(𝑥𝑥, 𝑡𝑡)𝑔𝑔𝑘𝑘(𝑡𝑡) = 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)  

we obtain 

 

𝐹𝐹(𝑥𝑥, 𝑡𝑡)[(𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) + (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) − (𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦)
− (𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡)]𝑔𝑔𝑘𝑘(𝑡𝑡) 

= (𝑦𝑦 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) 

+(𝑡𝑡 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) 

−(𝑦𝑦 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) 

−(𝑡𝑡 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑔𝑔𝛽𝛽−𝑘𝑘(𝑡𝑡) ≤ 0 

Now, integrating over (𝑎𝑎, 𝑥𝑥) with respect to 𝑡𝑡 we obtain  

(𝑦𝑦 − 𝑎𝑎)𝜃𝜃 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) ∫ 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝛽𝛽(𝑡𝑡)

𝑥𝑥

𝑎𝑎

𝑑𝑑𝑑𝑑 

+𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) ∫ 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1(𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑥𝑥

𝑎𝑎

 

−(𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦) 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) ∫ 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1𝑔𝑔𝑘𝑘(𝑡𝑡)𝑑𝑑

𝑥𝑥

𝑎𝑎

𝑡𝑡 

− 1
𝑝𝑝𝛿𝛿Γ(𝛿𝛿) ∫ 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑡𝑡)(𝑥𝑥 − 𝑡𝑡)𝛿𝛿−1(𝑡𝑡 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑥𝑥

𝑎𝑎

≤ 0 

It follows from this 

(𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)] + 𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦)𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)]                

−(𝑦𝑦 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽−𝑘𝑘(𝑦𝑦)𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)] − 𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)].             (3.3) 
 

 By multiplying both sides of (3.3) by 

𝐹𝐹(𝑥𝑥, 𝑦𝑦)𝑔𝑔𝑘𝑘(𝑦𝑦) = 1
𝑝𝑝𝑠𝑠Γ(𝛿𝛿) 𝑒𝑒

𝑝𝑝−1
𝑝𝑝 (𝑥𝑥−𝑦𝑦)(𝑥𝑥 − 𝑦𝑦)𝑠𝑠−1𝑔𝑔𝑘𝑘(𝑦𝑦)  

where 𝑦𝑦 ∈ (𝑎𝑎, 𝑥𝑥), 𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏]. Then integrating this resultant over (𝑎𝑎, 𝑥𝑥) with respect to 𝑦𝑦 we 
obtain 

 

𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝑠𝑠,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+
𝑠𝑠,𝑝𝑝[𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝑘𝑘(𝑥𝑥)] 

−𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)] − 𝐼𝐼𝑎𝑎+
𝑠𝑠,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)] ≤ 0.  (3.4) 

Now, we achieve the desired inequality by dividing (3.4) by  

𝐼𝐼𝑎𝑎+
𝛿𝛿,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝑠𝑠,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)] + 𝐼𝐼𝑎𝑎+
𝑠𝑠,𝑝𝑝[(𝑥𝑥 − 𝑎𝑎)𝜃𝜃𝑔𝑔𝛽𝛽(𝑥𝑥)]𝐼𝐼𝑎𝑎+

𝛿𝛿,𝑝𝑝[𝑔𝑔𝑘𝑘(𝑥𝑥)]. 

4.CONCLUSIONS 

In this talk, we presented a inequality whose proof method based on  paper of Rahman 
et al. [5]. Our constraint the functions must be increasing. It will be a good idea to investigate 
validation of the inequality for more general class of constraints. 
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Abstract  

In this study, a proposed model describing the propagation of a computer virus in the 
network with antidote in a vulnerable system is analyzed. Using the Laplace Adomian 
Decomposition Method (LADM), the model's analytical and approximate-analytical solutions 
are determined. These solutions are found in the form of fast converging series that portray the 
system dynamics accurately. The efficiency of the method was tested and the validity of the 
introduced fractional-order model was proved through the numerical simulations. 

Keywords: Caputo fractional derivative; Computer Virus Propagation; Laplace Adomian 

decomposition; Nonlinear system. 

1.Introduction  

A computer virus is a type of malicious software program that spreads between systems by 
replicating itself, often disrupting operations or compromising data security. To understand 
and control the spread of such viruses in a network, researchers use mathematical models that 
simulate infection dynamics among computers. These models often draw inspiration from 
epidemiological models used in biology, such as the SIR or SAIR models, where each 
computer (or node) can transition between states like susceptible, infected, and recovered. By 
analyzing these models, it becomes possible to predict outbreak patterns, evaluate the impact 
of security measures, and optimize virus containment strategies. 

Many dynamical models describing propagation of computer viruses have been established by 
scholars at home and abroad. Particularly the classic epidemic models, such as computer virus 
propagation model [1] model, SIRS [2–4] model, SEIRS model [5], and SEIQRS model [6, 7], 
are used to investigate the spreading law of computer viruses due to the common feature 
between the computer virus and the biological virus. Some computer virus models with 
infectivity in both seizing and latent computers have been also proposed by Yang et al. [8–12]. 
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In this research, we are also exploring the potential of using the Laplace Adomian 
decomposition method (LADM) to solve the fractionalomputer virus propagation model. This 
method is a powerful yet straightforward approach to tackling epidemic models and has been 
successfully applied in biology, engineering, and applied mathematics. It combines the Laplace 
transform and the Adomian decomposition method, offering several advantages for solving 
complex problems. One of the advantages of this method is its accuracy, as by employing the 
Laplace transform, it transforms the differential equations into algebraic equations, which are 
often easier to solve. This transformation reduces the complexity of the problem and enables 
the use of powerful algebraic techniques to obtain accurate solutions. Additionally, the 
Adomian decomposition method provides a systematic and robust approach to handling 
nonlinear terms, allowing for accurate approximation of the solution even in the presence of 
nonlinearity. This method does not require any perturbation or linearization, nor does it need a 
defined size of the step like the Rung-Kutta of order 4 technique. Various models have already 
been solved using this particular technique, such as HIV infection of CD4+ T cells model [13], 
fractional-order smoking model [14], epidemic childhood diseases [15], Radhakrishnan–
Kundu–Lakshmanan equation [16], Asian option pricing model [17], Burger’s equation [18], 
Chen-Lee-Liu equation [19], prey-predator model [20], nonlinear fractional smoking 
mathematical model [21], COVID-19 model [22], HIV model [23], Smoking epidemic model 
[24], fractional-order co-infection SEIR model [24]. 
 
2.Model formulation 

In this article, we propose a computer virus propagation model that incorporates varying 
antidote rates for invulnerable nodes, taking into account both immunization methods and 
operating system vulnerabilities [1]. 

S′(𝑡𝑡) =  𝐵𝐵 − 𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) −  𝜀𝜀𝜀𝜀(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡),  

𝐴𝐴′(𝑡𝑡) =  𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡), 
𝐼𝐼′(𝑡𝑡) = 𝛾𝛾𝛾𝛾(𝑡𝑡)−∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜔𝜔𝜔𝜔(𝑡𝑡),  

𝑅𝑅′(𝑡𝑡) = 𝛿𝛿𝛿𝛿(𝑡𝑡)+∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡).      (2.1) 

The model considers a computer network in which each node exists in one of four possible 
states: susceptible (𝑆𝑆), latent (𝐴𝐴), infectious (𝐼𝐼), or recovered (𝑅𝑅). Susceptible nodes are 
healthy but vulnerable to infection. Latent nodes are infected, though the virus remains 
inactive. Infectious nodes carry active viruses, capable of spreading the infection. Recovered 
nodes have acquired immunity. The total number of nodes at time 𝒕𝒕 is given by 𝑁𝑁(𝑡𝑡) =
𝑆𝑆(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡). 

𝐵𝐵 is the constant recruitment of the susceptible nodes;𝜇𝜇 is the same rate at which every node 
in the states 𝑆𝑆(𝑡𝑡), A(𝑡𝑡),𝐼𝐼(𝑡𝑡), and 𝑅𝑅(𝑡𝑡) disconnects from the network; 𝜀𝜀 is the constantrate at 
which every susceptible node acquires temporaryimmunity due to antidote and Khanh and 
Huy [1] assume that ε < μ taking system vulnerability into account; α, 𝜆𝜆 , 𝛿𝛿,and 𝜔𝜔 are the 
other state transition rates of system (2.1). 

By applying the fractional derivative operator 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐  of order 𝛼𝛼,  0 < 𝛼𝛼 ≤ 1 in the system (2.1), 

we have 
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In this research, we are also exploring the potential of using the Laplace Adomian 
decomposition method (LADM) to solve the fractionalomputer virus propagation model. This 
method is a powerful yet straightforward approach to tackling epidemic models and has been 
successfully applied in biology, engineering, and applied mathematics. It combines the Laplace 
transform and the Adomian decomposition method, offering several advantages for solving 
complex problems. One of the advantages of this method is its accuracy, as by employing the 
Laplace transform, it transforms the differential equations into algebraic equations, which are 
often easier to solve. This transformation reduces the complexity of the problem and enables 
the use of powerful algebraic techniques to obtain accurate solutions. Additionally, the 
Adomian decomposition method provides a systematic and robust approach to handling 
nonlinear terms, allowing for accurate approximation of the solution even in the presence of 
nonlinearity. This method does not require any perturbation or linearization, nor does it need a 
defined size of the step like the Rung-Kutta of order 4 technique. Various models have already 
been solved using this particular technique, such as HIV infection of CD4+ T cells model [13], 
fractional-order smoking model [14], epidemic childhood diseases [15], Radhakrishnan–
Kundu–Lakshmanan equation [16], Asian option pricing model [17], Burger’s equation [18], 
Chen-Lee-Liu equation [19], prey-predator model [20], nonlinear fractional smoking 
mathematical model [21], COVID-19 model [22], HIV model [23], Smoking epidemic model 
[24], fractional-order co-infection SEIR model [24]. 
 
2.Model formulation 

In this article, we propose a computer virus propagation model that incorporates varying 
antidote rates for invulnerable nodes, taking into account both immunization methods and 
operating system vulnerabilities [1]. 

S′(𝑡𝑡) =  𝐵𝐵 − 𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) −  𝜀𝜀𝜀𝜀(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡),  

𝐴𝐴′(𝑡𝑡) =  𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡), 
𝐼𝐼′(𝑡𝑡) = 𝛾𝛾𝛾𝛾(𝑡𝑡)−∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜔𝜔𝜔𝜔(𝑡𝑡),  

𝑅𝑅′(𝑡𝑡) = 𝛿𝛿𝛿𝛿(𝑡𝑡)+∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡).      (2.1) 

The model considers a computer network in which each node exists in one of four possible 
states: susceptible (𝑆𝑆), latent (𝐴𝐴), infectious (𝐼𝐼), or recovered (𝑅𝑅). Susceptible nodes are 
healthy but vulnerable to infection. Latent nodes are infected, though the virus remains 
inactive. Infectious nodes carry active viruses, capable of spreading the infection. Recovered 
nodes have acquired immunity. The total number of nodes at time 𝒕𝒕 is given by 𝑁𝑁(𝑡𝑡) =
𝑆𝑆(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡). 

𝐵𝐵 is the constant recruitment of the susceptible nodes;𝜇𝜇 is the same rate at which every node 
in the states 𝑆𝑆(𝑡𝑡), A(𝑡𝑡),𝐼𝐼(𝑡𝑡), and 𝑅𝑅(𝑡𝑡) disconnects from the network; 𝜀𝜀 is the constantrate at 
which every susceptible node acquires temporaryimmunity due to antidote and Khanh and 
Huy [1] assume that ε < μ taking system vulnerability into account; α, 𝜆𝜆 , 𝛿𝛿,and 𝜔𝜔 are the 
other state transition rates of system (2.1). 

By applying the fractional derivative operator 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐  of order 𝛼𝛼,  0 < 𝛼𝛼 ≤ 1 in the system (2.1), 

we have 

𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 S(𝑡𝑡) =  𝐵𝐵 − 𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜀𝜀𝜀𝜀(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡),  

𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐴𝐴(𝑡𝑡) =  𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡), 
𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐼𝐼(𝑡𝑡) = 𝛾𝛾𝛾𝛾(𝑡𝑡)−∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜔𝜔𝜔𝜔(𝑡𝑡),  

𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑅𝑅(𝑡𝑡) = 𝛿𝛿𝛿𝛿(𝑡𝑡)+∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡).           (2.2) 
 

With the initial condition 

𝑆𝑆(0) = 𝑘𝑘1,𝐴𝐴(0) = 𝑘𝑘2, 𝐼𝐼(0) = 𝑘𝑘3,𝑅𝑅(0) = 𝑘𝑘4.                (2.3) 

3.Basic Definitions 

In this section, we will introduce some basic definitions and properties of the theory of 
fractional calculus that will be later.  

Definition 3.1  A real function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space 𝐶𝐶𝜇𝜇, 𝜇𝜇𝜇𝜇𝜇𝜇 if there exists a 
real number 𝑃𝑃 > 𝜇𝜇 such that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑝𝑝𝑓𝑓1(𝑥𝑥) where 𝑓𝑓1(𝑥𝑥)𝜖𝜖𝜖𝜖[0,∞). Clearly 𝐶𝐶𝜇𝜇 < 𝐶𝐶𝛽𝛽 if  𝜇𝜇 <
𝛽𝛽.  

Definition 3.2  A function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space𝐶𝐶𝜇𝜇𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚⋃{0} if 𝑓𝑓(𝑚𝑚) ∈ 𝐶𝐶𝜇𝜇.  

Definition 3.3 [25] The Riemann-Liouville fractional integral operator of the order 𝛼𝛼 > 0 of a 
function, 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1 is defined as 

(𝐽𝐽𝑎𝑎𝛼𝛼𝑓𝑓)(𝑥𝑥) = 1
𝛤𝛤(𝛼𝛼)∫

𝑥𝑥
𝑎𝑎 (𝑥𝑥 − 𝜏𝜏)𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑, 𝑥𝑥  > 𝑎𝑎,                          (3.1)

                                                          

(𝐽𝐽𝑎𝑎0𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥).                                  (3.2)                                                                                                                             

All the properties of the operator 𝐽𝐽𝛼𝛼 can be found in [19] which we mention only the 
following, for 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1,𝛼𝛼,𝛽𝛽 ≥ 0, rand 𝛾𝛾 > −1 we have  

(𝐽𝐽𝑎𝑎𝛼𝛼𝐽𝐽𝑎𝑎𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎𝛼𝛼+𝛽𝛽𝑓𝑓)(𝑥𝑥),                                                                                                  (3.3) 
                                                                          

(𝐽𝐽𝑎𝑎𝛼𝛼𝐽𝐽𝑎𝑎𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎𝛽𝛽𝐽𝐽𝑎𝑎𝛼𝛼𝑓𝑓)(𝑥𝑥)                                                                                                    (3.4) 

𝐽𝐽𝑎𝑎𝛼𝛼𝑥𝑥𝛾𝛾 = 𝛤𝛤(𝛾𝛾+1)
𝛤𝛤(𝛼𝛼+𝛾𝛾+1)𝑥𝑥

𝛼𝛼+𝛾𝛾.                                                                                                          (3.5) 

The basic definition of the Riemann–Louville fractional derivative possesses some advantages 
over other definitions when used to simulate real-world phenomena in the form of a 
fractional-type differential equation.  

Definition 3.4 [26] The fractional derivative of the function 𝑓𝑓(𝑥𝑥) in Caputo’s sense is defined 
as 
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(𝐷𝐷𝛼𝛼𝑎𝑎𝑓𝑓) (𝑥𝑥) = (𝐽𝐽𝑚𝑚 − 𝛼𝛼
𝑎𝑎 𝐷𝐷𝑚𝑚𝑓𝑓) (𝑥𝑥) = 1

𝛤𝛤(𝑚𝑚−𝑎𝑎)∫ (𝑥𝑥 − 𝑡𝑡)𝑚𝑚−𝛼𝛼−1𝑓𝑓(𝑚𝑚)(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
𝑎𝑎 ,   for 𝑚𝑚 − 1 < 𝛼𝛼 <

𝑚𝑚,𝑚𝑚 ∈ 𝑁𝑁, 𝑥𝑥 > 0.                (3.6)  

Lemma 3.1 If−1 < 𝛼𝛼 < 𝑚𝑚 , 𝑚𝑚 ∈ N and 𝜇𝜇 ≥ −1, then 

(𝐽𝐽𝑎𝑎𝛼𝛼𝐷𝐷𝑎𝑎𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − ∑𝑚𝑚−1
𝑘𝑘=0 𝑓𝑓𝑘𝑘(𝑎𝑎) ((𝑥𝑥−𝑎𝑎)𝑘𝑘

𝑘𝑘! ) ,𝑎𝑎 ≥ 0                                                          (3.7) 

(𝐷𝐷𝑎𝑎𝛼𝛼𝐽𝐽𝑎𝑎𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                                                                                             (3.8) 

 

4.Laplace Adomian Decomposition Method 

This section will illustrate the basic steps for the Laplace Adomian decomposition method 

(LADM). We first need the following definitions.  

Definition 4.1 [27] A function 𝑓𝑓 on 0 ≤ 𝑡𝑡 < ∞ is exponentially bounded of order 𝜎𝜎 ∈ 𝑅𝑅 if 

satisfies ∥ 𝑓𝑓(𝑡𝑡) ∥≤ 𝑀𝑀𝑒𝑒𝜎𝜎𝜎𝜎, for some real constant 𝑀𝑀 > 0. 

Definition 3.2  The Caputo fractional derivative is defined as follows: 

𝐿𝐿{𝐷𝐷𝜎𝜎𝑓𝑓(𝑡𝑡)} = 𝑠𝑠𝜎𝜎𝐿𝐿{𝑓𝑓(𝑡𝑡)} −∑
𝑚𝑚

𝑘𝑘=0
𝑠𝑠𝜎𝜎−𝑘𝑘−1𝑓𝑓(𝑘𝑘)(0), 

(4.a) 

where 𝑚𝑚 = 𝜎𝜎 + 1, and [𝛼𝛼] represents the integer part of 𝜎𝜎.   As a result, the following useful 

formula is obtained: 

𝐿𝐿(𝑡𝑡𝜎𝜎) = 𝛤𝛤(𝜎𝜎+1)
𝑠𝑠(𝜎𝜎+1) ,    𝜎𝜎 ∈ 𝑅𝑅+.         (4.b) 

The last-mentioned definitions can be used in this section to discuss the general procedures for 

solving the proposed mathematical model (2.2).  First of all, the Laplace transform is applied 

to both lift-hand and right-hand sides of Eq. (2.2) in the following form: 

 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 S(𝑡𝑡)) = 𝐿𝐿( 𝐵𝐵 − 𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜀𝜀𝜀𝜀(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡)), 

 𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐴𝐴(𝑡𝑡)) = 𝐿𝐿 = ( 𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡)),  

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐼𝐼(𝑡𝑡)) = 𝐿𝐿(𝛾𝛾𝛾𝛾(𝑡𝑡)−∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜔𝜔𝜔𝜔(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑅𝑅(𝑡𝑡)) = 𝐿𝐿(𝛿𝛿𝛿𝛿(𝑡𝑡)+∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡)).                           (4.1) 

 

Then, by applying the formula (4.a) to Eq. (4.1), we get  
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(𝐷𝐷𝛼𝛼𝑎𝑎𝑓𝑓) (𝑥𝑥) = (𝐽𝐽𝑚𝑚 − 𝛼𝛼
𝑎𝑎 𝐷𝐷𝑚𝑚𝑓𝑓) (𝑥𝑥) = 1

𝛤𝛤(𝑚𝑚−𝑎𝑎)∫ (𝑥𝑥 − 𝑡𝑡)𝑚𝑚−𝛼𝛼−1𝑓𝑓(𝑚𝑚)(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
𝑎𝑎 ,   for 𝑚𝑚 − 1 < 𝛼𝛼 <

𝑚𝑚,𝑚𝑚 ∈ 𝑁𝑁, 𝑥𝑥 > 0.                (3.6)  

Lemma 3.1 If−1 < 𝛼𝛼 < 𝑚𝑚 , 𝑚𝑚 ∈ N and 𝜇𝜇 ≥ −1, then 

(𝐽𝐽𝑎𝑎𝛼𝛼𝐷𝐷𝑎𝑎𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − ∑𝑚𝑚−1
𝑘𝑘=0 𝑓𝑓𝑘𝑘(𝑎𝑎) ((𝑥𝑥−𝑎𝑎)𝑘𝑘

𝑘𝑘! ) ,𝑎𝑎 ≥ 0                                                          (3.7) 

(𝐷𝐷𝑎𝑎𝛼𝛼𝐽𝐽𝑎𝑎𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                                                                                             (3.8) 

 

4.Laplace Adomian Decomposition Method 

This section will illustrate the basic steps for the Laplace Adomian decomposition method 

(LADM). We first need the following definitions.  

Definition 4.1 [27] A function 𝑓𝑓 on 0 ≤ 𝑡𝑡 < ∞ is exponentially bounded of order 𝜎𝜎 ∈ 𝑅𝑅 if 

satisfies ∥ 𝑓𝑓(𝑡𝑡) ∥≤ 𝑀𝑀𝑒𝑒𝜎𝜎𝜎𝜎, for some real constant 𝑀𝑀 > 0. 

Definition 3.2  The Caputo fractional derivative is defined as follows: 

𝐿𝐿{𝐷𝐷𝜎𝜎𝑓𝑓(𝑡𝑡)} = 𝑠𝑠𝜎𝜎𝐿𝐿{𝑓𝑓(𝑡𝑡)} −∑
𝑚𝑚

𝑘𝑘=0
𝑠𝑠𝜎𝜎−𝑘𝑘−1𝑓𝑓(𝑘𝑘)(0), 

(4.a) 

where 𝑚𝑚 = 𝜎𝜎 + 1, and [𝛼𝛼] represents the integer part of 𝜎𝜎.   As a result, the following useful 

formula is obtained: 

𝐿𝐿(𝑡𝑡𝜎𝜎) = 𝛤𝛤(𝜎𝜎+1)
𝑠𝑠(𝜎𝜎+1) ,    𝜎𝜎 ∈ 𝑅𝑅+.         (4.b) 

The last-mentioned definitions can be used in this section to discuss the general procedures for 

solving the proposed mathematical model (2.2).  First of all, the Laplace transform is applied 

to both lift-hand and right-hand sides of Eq. (2.2) in the following form: 

 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 S(𝑡𝑡)) = 𝐿𝐿( 𝐵𝐵 − 𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝜔𝜔𝜔𝜔(𝑡𝑡) − 𝜀𝜀𝜀𝜀(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡)), 

 𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐴𝐴(𝑡𝑡)) = 𝐿𝐿 = ( 𝜆𝜆𝜆𝜆(𝑡𝑡)𝐴𝐴(𝑡𝑡) − 𝛿𝛿𝛿𝛿(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡)),  

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐼𝐼(𝑡𝑡)) = 𝐿𝐿(𝛾𝛾𝛾𝛾(𝑡𝑡)−∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜔𝜔𝜔𝜔(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑅𝑅(𝑡𝑡)) = 𝐿𝐿(𝛿𝛿𝛿𝛿(𝑡𝑡)+∝ 𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡)).                           (4.1) 

 

Then, by applying the formula (4.a) to Eq. (4.1), we get  

 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆) − 𝑠𝑠𝛼𝛼−1S(0) = 𝐵𝐵
𝑠𝑠 − 𝜆𝜆𝜆𝜆(𝑆𝑆𝑆𝑆) + 𝜔𝜔 𝐿𝐿(𝐼𝐼) − 𝜀𝜀𝜀𝜀(𝑅𝑅) − 𝜇𝜇𝜇𝜇(𝑆𝑆), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝐴𝐴) − 𝑠𝑠𝛼𝛼−1A(0) = 𝜆𝜆𝜆𝜆(𝑆𝑆𝑆𝑆) −  𝛿𝛿𝛿𝛿(𝐴𝐴) − 𝛾𝛾𝛾𝛾(𝐴𝐴) − 𝜇𝜇𝜇𝜇(𝐴𝐴), 

𝑠𝑠𝛼𝛼𝐿𝐿(I) − 𝑠𝑠𝛼𝛼−1𝐼𝐼(0) = 𝛾𝛾𝛾𝛾(𝐴𝐴)− ∝ 𝐿𝐿(𝐼𝐼) − 𝜇𝜇𝜇𝜇(𝐼𝐼) − 𝜔𝜔𝜔𝜔(𝐼𝐼), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑅𝑅)− 𝑠𝑠𝛼𝛼−1𝑅𝑅(0) = 𝛿𝛿𝛿𝛿(𝐴𝐴)+∝ 𝐿𝐿(𝐼𝐼) − 𝜇𝜇𝜇𝜇(𝑅𝑅) + 𝜀𝜀𝜀𝜀(𝑅𝑅).                                      (4.2) 

 

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get  

 

𝐿𝐿(𝑆𝑆) = 𝑘𝑘1
𝑠𝑠 + 𝐵𝐵

𝑠𝑠𝛼𝛼+1 −
𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑆𝑆) +  𝜔𝜔

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼) − 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅) −  𝜇𝜇𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆), 

𝐿𝐿(A) = 𝑘𝑘2
𝑠𝑠 + 𝜆𝜆

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑆𝑆) −  𝛿𝛿𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴) − 𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴) − 𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴), 

𝐿𝐿(I) = 𝑘𝑘3
𝑠𝑠 + 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴) − ∝ 
𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼) − 𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼) − 𝜔𝜔
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼), 

𝐿𝐿(𝑅𝑅) = 𝑘𝑘4
𝑠𝑠 + 𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴) + ∝ 
𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼) − 𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅) + 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅).                                                (4.3) 

 

The proposed method gives the solution as an infinite series. Let the value of 𝐶𝐶 = 𝑆𝑆𝑆𝑆  to be 

able to apply the Adomian decomposition method. We consider the solution as an infinite series 

in the form  

 

𝑆𝑆(𝑡𝑡) = ∑ 𝑆𝑆𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=0 , A(𝑡𝑡) = ∑ 𝐴𝐴𝑛𝑛(𝑡𝑡)∞

𝑛𝑛=0 , 𝐼𝐼(𝑡𝑡) = ∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=0 , 𝑅𝑅(𝑡𝑡) = ∑ 𝑅𝑅𝑛𝑛(𝑡𝑡)∞

𝑛𝑛=0 .               

(4.4) 

 

Then, by decomposing the nonlinear part named 𝐶𝐶 in the following form  

 

  𝐶𝐶 = ∑ 𝐶𝐶𝑛𝑛∞
𝑛𝑛=0 ,                     (4.5) 

Here, 𝐶𝐶𝑛𝑛 can be computed using the convolution operation as 

𝐶𝐶𝑛𝑛 = 1
𝛤𝛤(𝑛𝑛 + 1)

𝑑𝑑𝑛𝑛
𝑑𝑑𝜀𝜀𝑛𝑛 [∑𝜀𝜀𝑖𝑖𝑆𝑆𝑖𝑖

𝑛𝑛

𝑖𝑖=0
∑𝜀𝜀𝑖𝑖𝐴𝐴𝑖𝑖
𝑛𝑛

𝑖𝑖=0
]
𝜀𝜀=0

, 
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         (4.6) 

By substituting Eq. (4.4- 4.6) into Eq. (4.3) we have resulted in the form.  

 

𝐿𝐿 (∑𝑆𝑆𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝑘𝑘1

𝑠𝑠 + 𝐵𝐵
𝑠𝑠𝛼𝛼+1 −

𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
) +  𝜔𝜔

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼) − 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑅𝑅𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
)

−  𝜇𝜇𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑆𝑆𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝑘𝑘2

𝑠𝑠 + 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
) −  𝛿𝛿𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
)

− 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
), 

𝐿𝐿(I) = 𝑘𝑘3
𝑠𝑠 + 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − 𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − 𝜔𝜔

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿(𝑅𝑅) = 𝑘𝑘4
𝑠𝑠 + 𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) + ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − 𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) + 𝜀𝜀

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
). 

                                                                  
                    (4.7) 

Then, matching the two sides of Eq. (4.7) yields the following iterative algorithm 

 

𝑆𝑆0 = 𝑘𝑘1
𝑠𝑠 , 𝐴𝐴0 = 𝑘𝑘2

𝑠𝑠 , 𝐼𝐼0 = 𝑘𝑘3
𝑠𝑠 ,      𝑅𝑅0 = 𝑘𝑘4

𝑠𝑠 , 

𝐿𝐿(𝑆𝑆1) = 𝐵𝐵
𝑠𝑠𝛼𝛼+1 −

𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) +  𝜔𝜔

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼0) − 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0) −  𝜇𝜇𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆0), 

𝐿𝐿(𝐴𝐴1) = 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) −  𝛿𝛿𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0), 

𝐿𝐿(I1) = 𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼0) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0) − 𝜔𝜔

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0), 

𝐿𝐿(𝑅𝑅1) = 𝛿𝛿
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) + ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼0) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0) + 𝜀𝜀

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0), …, 

𝐿𝐿(𝑆𝑆𝑛𝑛) = − 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) +  𝜔𝜔

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼𝑛𝑛−1) − 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝑛𝑛−1) −  𝜇𝜇𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑛𝑛−1), 

𝐿𝐿(𝐴𝐴𝑛𝑛) = 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) −  𝛿𝛿𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1), 
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         (4.6) 

By substituting Eq. (4.4- 4.6) into Eq. (4.3) we have resulted in the form.  

 

𝐿𝐿 (∑𝑆𝑆𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝑘𝑘1

𝑠𝑠 + 𝐵𝐵
𝑠𝑠𝛼𝛼+1 −

𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
) +  𝜔𝜔

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼) − 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑅𝑅𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
)

−  𝜇𝜇𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑆𝑆𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝑘𝑘2

𝑠𝑠 + 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
) −  𝛿𝛿𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
)

− 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
), 

𝐿𝐿(I) = 𝑘𝑘3
𝑠𝑠 + 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − 𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − 𝜔𝜔

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿(𝑅𝑅) = 𝑘𝑘4
𝑠𝑠 + 𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) + ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − 𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) + 𝜀𝜀

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
). 

                                                                  
                    (4.7) 

Then, matching the two sides of Eq. (4.7) yields the following iterative algorithm 

 

𝑆𝑆0 = 𝑘𝑘1
𝑠𝑠 , 𝐴𝐴0 = 𝑘𝑘2

𝑠𝑠 , 𝐼𝐼0 = 𝑘𝑘3
𝑠𝑠 ,      𝑅𝑅0 = 𝑘𝑘4

𝑠𝑠 , 

𝐿𝐿(𝑆𝑆1) = 𝐵𝐵
𝑠𝑠𝛼𝛼+1 −

𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) +  𝜔𝜔

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼0) − 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0) −  𝜇𝜇𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆0), 

𝐿𝐿(𝐴𝐴1) = 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) −  𝛿𝛿𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0), 

𝐿𝐿(I1) = 𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼0) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0) − 𝜔𝜔

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0), 

𝐿𝐿(𝑅𝑅1) = 𝛿𝛿
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) + ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼0) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0) + 𝜀𝜀

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0), …, 

𝐿𝐿(𝑆𝑆𝑛𝑛) = − 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) +  𝜔𝜔

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼𝑛𝑛−1) − 𝜀𝜀
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝑛𝑛−1) −  𝜇𝜇𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑛𝑛−1), 

𝐿𝐿(𝐴𝐴𝑛𝑛) = 𝜆𝜆
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) −  𝛿𝛿𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1), 

𝐿𝐿(I𝑛𝑛) = 𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) − ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼𝑛𝑛−1) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1) − 𝜔𝜔

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1), 

𝐿𝐿(𝑅𝑅𝑛𝑛) = 𝛿𝛿
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) + ∝ 

𝑠𝑠𝛼𝛼  𝐿𝐿(𝐼𝐼𝑛𝑛−1) − 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝑛𝑛−1) + 𝜀𝜀

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝑛𝑛−1).           (4.8) 

Finally, by taking the inverse transform of Eq. (4.8), we have the following equation  

𝑆𝑆0 = 𝑘𝑘1, 𝐴𝐴0 = 𝑘𝑘2, 𝐼𝐼0 = 𝑘𝑘3,      𝑅𝑅0 = 𝑘𝑘4, 

𝑆𝑆1 = [𝐵𝐵 − 𝜆𝜆𝐶𝐶0 + 𝜔𝜔𝐼𝐼0 −  𝜇𝜇𝑆𝑆0] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1), 

A1 = [𝜆𝜆𝐶𝐶0 − 𝛿𝛿𝐴𝐴0 − 𝛾𝛾𝐴𝐴0−𝜇𝜇𝜇𝜇0] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1), 

𝐼𝐼1 = [ 𝛾𝛾𝐴𝐴0−∝ 𝐼𝐼0 −  𝜇𝜇𝐼𝐼0 − 𝜔𝜔𝐼𝐼0] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1), 

𝑅𝑅1 = [𝛿𝛿𝐴𝐴0+∝ 𝐼𝐼0 −  𝜇𝜇𝑅𝑅0 +  𝜀𝜀𝑅𝑅0] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1) , …, 

𝑆𝑆𝑛𝑛 = [−𝜆𝜆𝐶𝐶𝑛𝑛−1 + 𝜔𝜔𝐼𝐼𝑛𝑛−1 −  𝜇𝜇𝑆𝑆𝑛𝑛−1] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1), 

A𝑛𝑛 = [𝜆𝜆𝐶𝐶𝑛𝑛−1 − 𝛿𝛿𝐴𝐴𝑛𝑛−1 − 𝛾𝛾𝐴𝐴𝑛𝑛−1−𝜇𝜇𝜇𝜇𝑛𝑛−1] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1), 

𝐼𝐼𝑛𝑛 = [ 𝛾𝛾𝐴𝐴𝑛𝑛−1−∝ 𝐼𝐼𝑛𝑛−1 −  𝜇𝜇𝐼𝐼𝑛𝑛−1 − 𝜔𝜔𝐼𝐼𝑛𝑛−1] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1), 

𝑅𝑅𝑛𝑛 = [𝛿𝛿𝐴𝐴𝑛𝑛−1+∝ 𝐼𝐼𝑛𝑛−1 −  𝜇𝜇𝑅𝑅𝑛𝑛−1 +  𝜀𝜀𝐼𝐼𝑛𝑛−1] 𝑡𝑡𝛼𝛼
𝛤𝛤(𝛼𝛼 + 1) , …, 

                                                (4.9) 

Similarly, at the final step, we get the rest of the terms as infinite series as, 

𝑆𝑆(𝑡𝑡) = ∑𝑆𝑆𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝑘𝑘1 + [𝜆𝜆𝐶𝐶0 − 𝛿𝛿𝐴𝐴0 − 𝛾𝛾𝐴𝐴0−𝜇𝜇𝜇𝜇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯,   

𝐴𝐴(𝑡𝑡) = ∑𝐴𝐴𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝑘𝑘2 + [𝜆𝜆𝐶𝐶0 − 𝛿𝛿𝐴𝐴0 − 𝛾𝛾𝐴𝐴0−𝜇𝜇𝜇𝜇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯, 

  𝐼𝐼(𝑡𝑡) = ∑𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝑘𝑘3 + [𝛾𝛾𝐴𝐴0−∝ 𝐼𝐼0 −  𝜇𝜇𝐼𝐼0 − 𝜔𝜔𝐼𝐼0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯,   
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𝑅𝑅(𝑡𝑡) = ∑ 𝑅𝑅𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=0 = 𝑘𝑘4 + [𝛿𝛿𝐴𝐴0+∝ 𝐼𝐼0 −  𝜇𝜇𝑅𝑅0 +  𝜀𝜀𝑅𝑅0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼+1) + ⋯.                                 
                                                                                             
                        (4.10) 

Equation (4.10) solves the main SAIR model of Eq. (2.1) which will be illustrated in the next 
section. 

5.Numerical Simulations 

In this section, we test the effectiveness of the proposed technique by examining the acquired 
results for model (2.1) for different 𝛼𝛼. The numerical simulations are presented by taking 
partial parameters from numerical simulations in [1]. In this section, the values of various 
parameters are presented for two different cases. 

The results obtained by LADM match the exact solutions when 𝛼𝛼 =  1. Figure 1-13 presents 
a comparison between the results obtained using LADM and those generated by MATLAB's 
ODE45 (a Runge-Kutta 4th order method) across various model categories.It is evident from 
this figure that the proposed technique is efcient and accurate, as it perfectly agrees with the 
MATLAB code results. 

 

Case 1: Consider 𝐵𝐵 = 5, ∝= 0.1, 𝛿𝛿 = 0.35, 𝜀𝜀 =  0.1, 𝛾𝛾 = 0.45, 𝜆𝜆 = 0.7, µ = 0.35 and  𝜔𝜔 =
0.1. With the initial condition (𝑆𝑆(0), 𝐿𝐿(0), 𝐼𝐼(0),𝑅𝑅(0)) =  (0.5, 3.5, 5, 5.5). 

 

 

Fig. 1 The solution of  𝑆𝑆(𝑡𝑡),𝐴𝐴(𝑡𝑡), 𝐼𝐼(𝑡𝑡) and 𝑅𝑅(𝑡𝑡) obtained by Rung-Kutta of order 4 technique 
(ODE 45) for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  50. 
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Fig. 2 The solution of  𝑆𝑆(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 

 

Fig. 3 The solution of  𝐴𝐴(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 
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Fig. 4 The solution of  𝐼𝐼(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 

 

 

Fig. 5 The solution of  𝑅𝑅(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 
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Fig. 5 The solution of  𝑅𝑅(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 

Case 2: Consider 𝐵𝐵 = 3, ∝= 0.05, 𝛿𝛿 = 0.25, 𝜀𝜀 =  0.02, 𝛾𝛾 = 0.001, 𝜆𝜆 = 0.25, µ = 0.35 and 
 𝜔𝜔 = 0.01. With the initial condition (𝑆𝑆(0),𝐿𝐿(0), 𝐼𝐼(0),𝑅𝑅(0)) = (1.5, 0.01, 0.02, 0.001). 

 

 

 

Fig. 6  The solution of 𝑆𝑆(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  50. 

 

Fig. 7 The solution of  𝑆𝑆(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 
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Fig. 8  The solution of 𝐴𝐴(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  50. 

 

Fig. 9 The solution of  𝐴𝐴(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 
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Fig. 8  The solution of 𝐴𝐴(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  50. 

 

Fig. 9 The solution of  𝐴𝐴(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 

 

Fig. 10  The solution of 𝐼𝐼(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  50. 

 

 

Fig. 11 The solution of  𝐼𝐼(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 
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Fig. 12  The solution of 𝑅𝑅(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  50. 

 

 

 

Fig. 13 The solution of  𝑅𝑅(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 
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Fig. 12  The solution of 𝑅𝑅(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  50. 

 

 

 

Fig. 13 The solution of  𝑅𝑅(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 50. 

 

6.Conclusions 

In this paper, an improved fractional model for propagation of computer virus in the network, 
that containing the latent, antidotal computers and susceptible computers with low cure rate, is 
introduced and studied. the model has been successfully solved using two different approaches: 
the Rung-Kutta of order 4 and Laplace Adomian decomposition method.The acquired results 
ensure accurate solutions and are investigated for different values of the fractional-order 𝛼𝛼 and 
transmission rates.All obtained results have been analyzed and compared for various cases. Our 
results and methods  in this work can be further extended or generalized in solving other 
interesting nonlinear models arising from some phenomena in physics and engineering. In 
addition, our results can also be applied for models formulated using other fractional 
derivatives. 
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Abstract

In this paper we examine the (3 + 1)−dimensional Gross-Pitaevskii equation, which describes phenomena such as wave
propagation. The solitonic wave solutions of the underlying problem are examined using two efficient techniques: the modified
auxiliary equation method and the exp(−w(ξ)) method. This approach yields solutions that are stated as exponential, rational,
trigonometric, and hyperbolic functions. To have a better understanding of their dynamic behavior, several of the distinct types of
solitons, including dark waves, have also been shown using 3D visuals for varying parameter values. The stability of the obtained
results is confirmed by investigating the modulation instability for the governing model.

Keywords: The modified auxiliary equation method; exp(−w(ξ)) method; Gross-Pitaevskii equation.

1 Introduction
Numerous disciplines, such as ocean engineering, solitary wave theory, hydrodynamics, optical fibers, chaos theory, and turbulent
theory, utilize nonlinear evolution equations (NLEEs). Many nonlinear mathematical and physical processes depend on the search
for accessible properties and the building of accurate solutions for nonlinear dynamical models. Since the end of the 1970s,
numerous approaches have been put forth in this context to methodically find answers for such models. The reference list [1]-
[22] contains some of these techniques. One classical example of a nonlinear evolution equation is the Gross–Pitaevskii equation.
It is an alternative form of the well-known nonlinear Schrödinger equation (NLSE), a general model controlling complex field
envelope evolution in nonlinear dispersive media. Generally speaking, the Gross–Pitaevskii equation , which is essentially a
mean-field approximation for the interparticle interactions, describes the dynamics of the condensate at zero temperature. Formal
analytical results of the Gross–Pitaevskii equation are given in [23]. In [24] Bao, Jaksch and Markowich investigate the numerical
solution of the time-dependent Gross–Pitaevskii equation at very low or zero temperature, which describes a Bose–Einstein
condensate (BEC). In [25] with the help of numerical approaches, the Bose-Einstein condensate of trapped interacting neutral
atoms at zero temperature is described by the time-independent nonlinear Gross-Pitaevskii equation in two dimensions. The
(3+1)-dimensional periodic potential has certain modernistic soliton solutions, which are investigated by researchers in [26]. To
obtain a range of novel solutions for the governing model, three methods are used: the extended G/G′-expansion approach, the
Sardar sub-equation method, and the function method. In this work, we focus Manjun’s (3 + 1)−dimensional Gross–Pitaevskii
equation in [27] given as

i
∂

∂t
h(s, t) = −∇h(s, t) + U(x)h(s, t) + g(s, t)|h|2h, (1)

∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

where s ∈ �3; t > 0. ∇ stands for the Laplacian operator. The function U(x) describes the potential of the trap to confine the
condensate and s = (x, y, z) is the propagation variable and t is the transverse variable. The nonlinear coefficient g(s, t) is the
real-valued functions of time and spatial coordinates. We apply the exp(−w(xi))-expansion approach and modified auxiliary
equation method to obtain soliton solutions. By displaying the 2D, 3D, and contour plots, more thorough information regarding
the dynamical representation of some of the solutions is shown.

This paper is organized as follows: we give the presentation of methodologies in Section 2. In the next section, the math-
ematical analysis and an application of the mentioned methods are given. In section 4, we discuss the modulation instability
analysis. In Section 5, we give some conclusions and discussions about the obtained solutions. Finally, the study is concluded
with the Conclusion section.

2 Presentation of methodologies
In this part, the exp(−w(ξ)) method and the modified auxiliary equation method have been explained in detail.

1
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1 Department of Mathematics, Bolu Abant Izzet Baysal University, 16059, Bolu, Turkey
2 Department of Mathematics, Bursa Uludag University, 16059, Bursa, Turkey

esraunal@ibu.edu.tr, ysaglam@uludag.edu.tr

Abstract

In this paper we examine the (3 + 1)−dimensional Gross-Pitaevskii equation, which describes phenomena such as wave
propagation. The solitonic wave solutions of the underlying problem are examined using two efficient techniques: the modified
auxiliary equation method and the exp(−w(ξ)) method. This approach yields solutions that are stated as exponential, rational,
trigonometric, and hyperbolic functions. To have a better understanding of their dynamic behavior, several of the distinct types of
solitons, including dark waves, have also been shown using 3D visuals for varying parameter values. The stability of the obtained
results is confirmed by investigating the modulation instability for the governing model.

Keywords: The modified auxiliary equation method; exp(−w(ξ)) method; Gross-Pitaevskii equation.

1 Introduction
Numerous disciplines, such as ocean engineering, solitary wave theory, hydrodynamics, optical fibers, chaos theory, and turbulent
theory, utilize nonlinear evolution equations (NLEEs). Many nonlinear mathematical and physical processes depend on the search
for accessible properties and the building of accurate solutions for nonlinear dynamical models. Since the end of the 1970s,
numerous approaches have been put forth in this context to methodically find answers for such models. The reference list [1]-
[22] contains some of these techniques. One classical example of a nonlinear evolution equation is the Gross–Pitaevskii equation.
It is an alternative form of the well-known nonlinear Schrödinger equation (NLSE), a general model controlling complex field
envelope evolution in nonlinear dispersive media. Generally speaking, the Gross–Pitaevskii equation , which is essentially a
mean-field approximation for the interparticle interactions, describes the dynamics of the condensate at zero temperature. Formal
analytical results of the Gross–Pitaevskii equation are given in [23]. In [24] Bao, Jaksch and Markowich investigate the numerical
solution of the time-dependent Gross–Pitaevskii equation at very low or zero temperature, which describes a Bose–Einstein
condensate (BEC). In [25] with the help of numerical approaches, the Bose-Einstein condensate of trapped interacting neutral
atoms at zero temperature is described by the time-independent nonlinear Gross-Pitaevskii equation in two dimensions. The
(3+1)-dimensional periodic potential has certain modernistic soliton solutions, which are investigated by researchers in [26]. To
obtain a range of novel solutions for the governing model, three methods are used: the extended G/G′-expansion approach, the
Sardar sub-equation method, and the function method. In this work, we focus Manjun’s (3 + 1)−dimensional Gross–Pitaevskii
equation in [27] given as
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where s ∈ �3; t > 0. ∇ stands for the Laplacian operator. The function U(x) describes the potential of the trap to confine the
condensate and s = (x, y, z) is the propagation variable and t is the transverse variable. The nonlinear coefficient g(s, t) is the
real-valued functions of time and spatial coordinates. We apply the exp(−w(xi))-expansion approach and modified auxiliary
equation method to obtain soliton solutions. By displaying the 2D, 3D, and contour plots, more thorough information regarding
the dynamical representation of some of the solutions is shown.

This paper is organized as follows: we give the presentation of methodologies in Section 2. In the next section, the math-
ematical analysis and an application of the mentioned methods are given. In section 4, we discuss the modulation instability
analysis. In Section 5, we give some conclusions and discussions about the obtained solutions. Finally, the study is concluded
with the Conclusion section.

2 Presentation of methodologies
In this part, the exp(−w(ξ)) method and the modified auxiliary equation method have been explained in detail.

1

2.1 The exp(−w(ξ))-expansion method
Consider the following nonlinear evolution equation [28, 29]

Q(u, ut, ux, utt, utt, ...) = 0, (2)

where Q is a polynomial in u(x, t) and its derivatives in which higher order derivatives and nonlinear terms are involved. In

virtue of the traveling wave transformation
u = u(ξ), ξ = x− ct, (3)

where c is a constant to be determined later, Eq. (2) can be reduced to an ordinary differential equation (ODE)

P (u, u′, u′′, ...) = 0, (4)

where prime denotes the derivative with respect to ξ. The, the traveling wave solutions of Eq. (4) can be expressed as follows

u = a0 + a1 exp(−w(ξ)) + ...+ an(exp(−w(ξ)))n (5)

where n is determined by balancing the highest order nonlinear terms with the highest order derivatives of u(ξ) in Eq. (4) and

w = w(ξ) satisfies the following ODE

w′(ξ) = exp(−w(ξ)) + a exp(w(ξ)) + b. (6)

Eq. (6) has the following analytical solutions:
Case 1: a �= 0, b2 − 4a > 0,

w1(ξ) = ln


 −b−

√
b2 − 4 a tanh

(√
b2−4 a
2 ξ

)

2a


 . (7)

Case 2: a �= 0, b2 − 4a < 0,

w2(ξ) = ln


 −b+

√
−b2 + 4a tan

( √
−b2+4a

2 ξ
)

2a


 . (8)

Case 3: a �= 0, b2 − 4a = 0,

w3(ξ) = ln

(
−2 b ξ + 4

b2ξ

)
. (9)

Case 4: b �= 0, a = 0,

w4(ξ) = − ln

(
b

exp(bξ)− 1

)
. (10)

Case 5: a = 0, b = 0.
w5 (ξ) = ln(ξ). (11)

Here, for simplicity, in wi(ξ), 1 ≤ i ≤ 5, have been replaced all of ξ + ξ0 with ξ, since Eq. (6) is an autonomous ODE.
Next, substituting Eq. (5) along with Eq. (6) into Eq. (4) yields a polynomial in exp(−w(ξ)). Setting each coefficient of this
polynomial to zero, a set of algebraic equations in terms of a0, a1, ..., an, c, b, a is obtained. Lastly solving the system of algebraic
equations and later substituting these results and analytical solutions w1(ξ), ..., w5(ξ) into Eq. (5) give traveling wave solutions

of Eq. (4).

2.2 The modified auxiliary equation method
To summarize the basic steps of this method let us consider the following PDE

Q(u, ut, ux, utt, utt, ...) = 0, (12)

where Q is a polynomial in dependent function and its partial derivatives. With the help of the traveling wave transformation
u = u(ξ), ξ = x− ct, where c is arbitrary constants, Eq. (12) can be transformed to an following ODE

P (u, u′, u′′, ...) = 0. (13)

Here (.)′ = d
dζ (.). To obtain the solution of Eq. (13) via the modified auxiliary equation method, the general solution has the

form

u = a0 +

n∑
i=1

aiK
if(ξ) +

n∑
i=1

biK
−if(ξ), (14)

2
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where ai, bi (0 ≤ i ≤ n) and K are constants to be determined and f(ξ) satisfy the following auxiliary equation

f ′(ξ) =
b+ aK−f(ξ) + cKf(ξ)

In(K)
, (15)

where a, b and c are parameters to be determined and K > 0, K �= 1. The integer n can be determined by balancing procedure.
Putting Eq. (14) with Eq. (15) into Eq. (13) and collecting coefficients of Kif(ξ) (i = −n, ..., n) by equating them to zero,
a system of algebraic equations is obtained. Then, solving this system, the values of constants ai, bi, a, b, c are obtained. By
putting all the values of constants into Eq. (14), the required solutions of considered equation have been obtained. Substituting
these values and the solutions of Eq. (14) into Eq. (13), the exact solutions of Eq. (12) can be derived. The solution of Eq. (15)
subject to the couple of cases is given as:
If b2 − 4ac < 0 and c �= 0, then

Kf(ξ) =
−b+

√
4ac− b2 tan( 12

√
4ac− b2ξ)

2c
, (16)

or −
−b+

√
4ac− b2 cot( 12

√
4ac− b2ξ)

2c
.

If b2 − 4ac > 0 and c �= 0, then

Kf(ξ) =
−b+

√
4ac− b2 tanh( 12

√
4ac− b2ξ)

2c
, (17)

or −
−b+

√
4ac− b2 coth( 12

√
4ac− b2ξ)

2c
.

If b2 − 4ac = 0 and c �= 0, then

Kf(ξ) = −2 + bξ

2cξ
. (18)

3 Mathematical analysis
In this section, the exact solutions of Eq. (1) are established by means of exp(−w(ξ))-expansion method and the modified
auxiliary equation method.

To seek exact analytical wave solutions of Eq. (1) we take the similarity transformation [30] by Malfliet,

h(x, y, z, t) = Ψ(ξ)eik(αx+γy+λz+βt), ξ = x+ y + z − ςt. (19)

Applying Eq.(19) into Eq. (1), we have the real and imaginary parts given as follows:
The real part:

3Ψ
′′
−Ψ[k2(α2 + γ2 + λ2) + kβ + U ]− gΨ3 = 0. (20)

The imaginary part:

Ψ[2k(α+ γ + λ)− ς] = 0. (21)

From Eq. (21), we obtain the velocity of solitons, given as:

ς = Ψ[2k(α+ γ + λ)]. (22)

By utilizing the homogenous balance approach in Eq. (20), we achieve n = 1. Now we will find the soliton solutions to the
above Eq. (20) by using the described approaches.

3.1 Implementation of exp(−w(ξ))-expansion method
For n = 1, Eq. (5) reduces into

Ψ(ξ) = a0 + a1 exp(w(ξ)), (23)

where a1 �= 0, a0 is a constant. Firstly, we substitute the expressions of Ψ in Eq. (23) into Eq. (20) and collect all terms with the
same order of together. Then by equating the coefficient of each polynomial to zero and by solving the gained system with the
use of the Maple tool, we achieve the below solution set:

Set 2 :


a0 =

√
6
√

1
g b

2
, a1 =

√
6

√
1

g
, β = −2α2k2 + 2γ2k2 + 2k2λ2 + 3b2 + 2U − 12a

2k
, k = k



 (24)

3
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f ′(ξ) =
b+ aK−f(ξ) + cKf(ξ)

In(K)
, (15)
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. (18)

3 Mathematical analysis
In this section, the exact solutions of Eq. (1) are established by means of exp(−w(ξ))-expansion method and the modified
auxiliary equation method.

To seek exact analytical wave solutions of Eq. (1) we take the similarity transformation [30] by Malfliet,

h(x, y, z, t) = Ψ(ξ)eik(αx+γy+λz+βt), ξ = x+ y + z − ςt. (19)

Applying Eq.(19) into Eq. (1), we have the real and imaginary parts given as follows:
The real part:

3Ψ
′′
−Ψ[k2(α2 + γ2 + λ2) + kβ + U ]− gΨ3 = 0. (20)

The imaginary part:

Ψ[2k(α+ γ + λ)− ς] = 0. (21)

From Eq. (21), we obtain the velocity of solitons, given as:

ς = Ψ[2k(α+ γ + λ)]. (22)

By utilizing the homogenous balance approach in Eq. (20), we achieve n = 1. Now we will find the soliton solutions to the
above Eq. (20) by using the described approaches.

3.1 Implementation of exp(−w(ξ))-expansion method
For n = 1, Eq. (5) reduces into

Ψ(ξ) = a0 + a1 exp(w(ξ)), (23)

where a1 �= 0, a0 is a constant. Firstly, we substitute the expressions of Ψ in Eq. (23) into Eq. (20) and collect all terms with the
same order of together. Then by equating the coefficient of each polynomial to zero and by solving the gained system with the
use of the Maple tool, we achieve the below solution set:

Set 2 :


a0 =

√
6
√

1
g b

2
, a1 =

√
6

√
1

g
, β = −2α2k2 + 2γ2k2 + 2k2λ2 + 3b2 + 2U − 12a

2k
, k = k


 (24)

3

The respective solutions are as following:
Case 1: If b2 − 4a > 0

Ψ1 =



√
6
√

1
g b

2
−

2
√
6
√

1
g a

√
b2 − 4a tanh

(√
b2−4a (−2k(α+γ+λ)t+x+y+z)

2

)
+ b


 e

Ik

(
αx− (2α2k2+2γ2k2+2k2λ2+3b2+2U−12a)t

2k +γy+bz

)

. (25)

Case 2: If b2 − 4a < 0

Ψ2 =



√
6
√

1
g b

2
−

2
√
6
√

1
g a

b−
√
−b2 + 4a tan

(√
−b2+4a (−2k(α+γ+λ)t+x+y+z)

2

)

 e

Ik

(
αx− (2α2k2+2γ2k2+2k2λ2+3b2+2U−12a)t

2k +γy+bz

)

. (26)

Case 3: If a = b2/4

Ψ3 =
2
√
6
√

1
g b e

Ik

(
αx− (2k2α2+2k2γ2+2k2λ2+3b2+2U−12a)t

2k +γy+bz

)

2b (−2k (α+ γ + λ) t+ x+ y + z) + 4
. (27)

Case 4: If a = 0

Ψ4 =

(√
6
√

1
g b eb(−2k(α+γ+λ)t+x+y+z)

2 +

√
6
√

1
g b

2

)
e
Ik

(
αx− (2α2k2+2γ2k2+2k2λ2+3b2+2U−12a)t

2k +γy+bz

)

eb(−2k(α+γ+λ)t+x+y+z) − 1
. (28)

Case 5: If a = 0, b = 0

Ψ5 =

√
6
√

1
g e

Ik

(
αx− (2k2α2+2k2γ2+2k2λ2+2U)t

2k +γy

)

−2k (α+ γ + λ) t+ x+ y + z
. (29)

3.2 Implementation of modified auxiliary equation method
Considering the homogeneous balance n = 1, we suppose that the solution of Eq. (20) can be expressed by

Ψ = a0 + a1K
f(ξ) + b1K

−f(ξ), (30)

where a0, a1, b1 are constants to be determined later. Putting Eq. (30) with Eq. (15) into Eq. (20), and by collecting all
coefficients of Kif((ξ)) (i = 0, 1), and setting them equal to zero, yields an algebraic system. At this stage, Maple can be used
to solve this equation system. Therefore, the following set of values of constants are obtained. Substituing this set into Eq. (30)
with the help of Eq. (19) the exact solutions of Eq. (1) are obtained.

Set 3 :


a0 =

√
6
√

1
g b

2
, a1 = 0, b1 = a

√
6

√
1

g
, k =

−β +
√
(−4U + 24 ac − 6 b2) (γ2 + λ2 + α2) + β2

2α2 + 2γ2 + 2λ2



 (31)

Set 4 :


a0 =

√
6
√

1
g b

2
, a1 = 0, b1 = a

√
6

√
1

g
, k =

−β
√
(−4U + 24 ac − 6 b2) (γ2 + λ2 + α2) + β2

2α2 + 2γ2 + 2λ2


 (32)

According to Set 3 in (31), the solitary wave solutions of Eq. (1) can be obtained as
If b2 − 4ac < 0 then

Ψ6(x, y, z, t) =


 b

√
6

2g
√

1
g

+

(
−b+

√
4ac− b2 tan

(
(x+y+z−ςt)

√
4ac−b2

2

))√
6
√

1
g

2


 eIk(αx+βt+γy+λz) (33)

or

Ψ7(x, y, z, t) = −


 b

√
6

2g
√

1
g

+

(
−b+

√
4ac− b2 cot

(
(x+y+z−ςt)

√
4ac−b2

2

))√
6
√

1
g

2


 eIk(αx+βt+γy+λz), (34)

4
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where ς = 2k(α+ γ + λ).
If b2 − 4ac > 0 then

Ψ8(x, y, z, t) =


 b

√
6

2g
√

1
g

+

(
−b+

√
−4ac+ b2 tanh

(
(x+y+z−ςt)

√
−4ac+b2

2

))√
6
√

1
g

2


 eIk(αx+βt+γy+λz) (35)

or

Ψ9(x, y, z, t) = −


 b

√
6

2g
√

1
g

+

(
−b+

√
−4ac+ b2 coth

(
(x+y+z−ςt)

√
−4ac+b2

2

))√
6
√

1
g

2


 eIk(αx+βt+γy+λz), (36)

where ς = 2k(α+ γ + λ).
If b2 − 4ac = 0

Ψ10(x, y, z, t) =

√
6 eIk(αx+βt+γy+λz)

2
√

1
g g

(
ςt
2 − x

2 − y
2 − z

2

) , (37)

where ς = 2k(α+ γ + λ).
According to Set 4 in (32), the solitary wave solutions of Eq. (1) can be obtained as
If b2 − 4ac < 0 then

Ψ11(x, y, z, t) =



√
6
√

1
g b

2
+

2ca
√
6
√

1
g

−b+
√
4ac− b2 tan

(
(x+y+z−ςt)

√
4ac−b2

2

)

 eIk(αx+βt+γy+λz) (38)

or

Ψ12(x, y, z, t) = −



√
6
√

1
g b

2
+

2ca
√
6
√

1
g

−b+
√
4ac− b2 cot

(
(x+y+z−ςt)

√
4ac−b2

2

)

 eIk(αx+βt+γy+λz), (39)

where ς = 2k(α+ γ + λ).
If b2 − 4ac > 0 then

Ψ13(x, y, z, t) =



√
6
√

1
g b

2
+

2ca
√
6
√

1
g

−b+
√
−4ac+ b2 tanh

(
(x+y+z−ςt)

√
−4ac+b2

2

)

 eIk(αx+βt+γy+λz) (40)

or

Ψ14(x, y, z, t) = −



√
6
√

1
g b

2
+

2ca
√
6
√

1
g

−b+
√
−4ac+ b2 coth

(
(x+y+z−ςt)

√
−4ac+b2

2

)

 eIk(αx+βt+γy+λz), (41)

where ς = 2k(α+ γ + λ).
If b2 − 4ac = 0 then

Ψ15(x, y, z, t) = −
8 eIk(αx+βt+γy+λz)

√
6
√

1
g

((
− ςt

8 + x
8 + y

8 + z
8

)
b2 + b

4 +
(
ςt
2 − x

2 − y
2 − z

2

)
ac
)

−4 + (2ςt− 2x− 2y − 2z) b
, (42)

where ς = 2k(α+ γ + λ).

4 Graphical Illustration
In this section, graphical representation will be given for some of the solutions obtained.
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√
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)

 eIk(αx+βt+γy+λz), (39)

where ς = 2k(α+ γ + λ).
If b2 − 4ac > 0 then

Ψ13(x, y, z, t) =



√
6
√

1
g b

2
+

2ca
√
6
√

1
g

−b+
√
−4ac+ b2 tanh

(
(x+y+z−ςt)

√
−4ac+b2

2
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or
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√
6
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1
g
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√
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√
6
√

1
g

((
− ςt

8 + x
8 + y

8 + z
8

)
b2 + b

4 +
(
ςt
2 − x

2 − y
2 − z

2

)
ac
)

−4 + (2ςt− 2x− 2y − 2z) b
, (42)
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4 Graphical Illustration
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(a)

(b)

Figure 1: Dark soliton solution 3D-profile and contour plot of |Ψ1|2 for b = 2, a = 0.1, α = −0.1, γ = 0.5, λ = −0.1, β =
5, g = 24, k = −0.4, y = 1, z = 1 within −5 ≤ t ≤ 5, −5 ≤ x ≤ 5.

(a)

(b)

Figure 2: Dark soliton solution 3D-profile and contour plot of |Ψ7|2 for a = −2, b = 0.5, c = 1, g = 35, k = −0.1, y = 1, z =
1, α = 0.5, β = 0.3, γ = 0.5, λ = −2.5, y = 1, z = 1 within −5 ≤ t ≤ 5, −5 ≤ x ≤ 5.

6



64 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

(a) (b)

Figure 3: Density plots of the solution |Ψ1|2 (a) and |Ψ7|2 (b).

In Figure 1 (a) the 3D surface plot shows a characteristic dip, which is a typical of a dark soliton. In (b) the contour plot
displays the same solution from a top-down perspective, with color coding indicating intensity levels.

In Figure 2 the 3D plot shows a deeper and wider soliton structure, reflecting the parameter changes.
In Figure 3 (a) and (b) provide clearer visualization of the spatial and temporal evolution of the soliton profiles, with intensity

gradients distinctly highlighting propagation characteristics.

5 Modulation instability analysis
In this part of the study, modulation instability analysis (MI) for the stationary solutions of Eq. (1) is studied by supposing that
Eq. (1) have the following stationary solution

h(x, y, z, t) =
(√

P + φ(x, y, z, t)
)
eiPηt, (43)

where the optical power P is normalized and η is a constant. We investigate the evolution of the perturbation φ(x, y, z, t) using
the concept of linear stability analysis. Substituting Eq. (43) into Eq. (1) and linearizing, we obtain

i
dφ

dt
+

d2φ

dx2
+

d2φ

dy2
+

d2φ

dz2
− Uφ− Pηφ+−Pg(φ∗ + 2φ) = 0 (44)

where φ∗ is the conjugate function. Supposing solutions of Eq. (44) are in the following form:

φ(x, y, z, t) = α1 e
i(k1x+k2y+k3z−ωt) + α2 e

−i(k1x+k2y+k3z−ωt), (45)

where ω is the frequency of perturbation and k1, k2, k3 are normalized wave numbers. Putting Eq. (45) into Eq. (44) gives a set
of two homogenous equations as follows

(
−Pη − 2Pg − k1

2 − k2
2 − k3

2 − U − ω
)
α2 − gα1P = 0,

(46)(
−Pη − 2Pg − k1

2 − k2
2 − k3

2 − U + ω
)
α1 − gα2P = 0.

From Eq. (46), one can easily obtain the following coefficient matrix of α1 and α2

(
−Pg −Pη − 2Pg − k1

2 − k2
2 − k3

2 − U − ω

−Pη − 2Pg − k1
2 − k2

2 − k3
2 − U + ω −Pg

)(
α1

α2

)
=

(
0
0

)
. (47)

The coefficient matrix in Eq. (47) has a nontrivial solution if the determinant equal to zero. By expanding the determinant, we
obtain the following
(
−η2 − 4ηg − 3g2

)
P 2−4

(
k1

2 + k2
2 + k3

2 + U
) (

g +
η

2

)
P−

(
k1

2 + k2
2 + k3

2 + U − ω
) (

k1
2 + k2

2 + k3
2 + U + ω

)
= 0.

(48)
Eq. (48) has the following solutions for ω :

ω = ±
√(

Pη + 3Pg + k1
2 + k2

2 + k3
2 + U

) (
Pη + Pg + k1

2 + k2
2 + k3

2 + U
)
. (49)
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(a) (b)

Figure 3: Density plots of the solution |Ψ1|2 (a) and |Ψ7|2 (b).

In Figure 1 (a) the 3D surface plot shows a characteristic dip, which is a typical of a dark soliton. In (b) the contour plot
displays the same solution from a top-down perspective, with color coding indicating intensity levels.

In Figure 2 the 3D plot shows a deeper and wider soliton structure, reflecting the parameter changes.
In Figure 3 (a) and (b) provide clearer visualization of the spatial and temporal evolution of the soliton profiles, with intensity

gradients distinctly highlighting propagation characteristics.

5 Modulation instability analysis
In this part of the study, modulation instability analysis (MI) for the stationary solutions of Eq. (1) is studied by supposing that
Eq. (1) have the following stationary solution

h(x, y, z, t) =
(√

P + φ(x, y, z, t)
)
eiPηt, (43)

where the optical power P is normalized and η is a constant. We investigate the evolution of the perturbation φ(x, y, z, t) using
the concept of linear stability analysis. Substituting Eq. (43) into Eq. (1) and linearizing, we obtain

i
dφ

dt
+

d2φ

dx2
+

d2φ

dy2
+

d2φ

dz2
− Uφ− Pηφ+−Pg(φ∗ + 2φ) = 0 (44)

where φ∗ is the conjugate function. Supposing solutions of Eq. (44) are in the following form:

φ(x, y, z, t) = α1 e
i(k1x+k2y+k3z−ωt) + α2 e

−i(k1x+k2y+k3z−ωt), (45)

where ω is the frequency of perturbation and k1, k2, k3 are normalized wave numbers. Putting Eq. (45) into Eq. (44) gives a set
of two homogenous equations as follows

(
−Pη − 2Pg − k1

2 − k2
2 − k3

2 − U − ω
)
α2 − gα1P = 0,

(46)(
−Pη − 2Pg − k1

2 − k2
2 − k3

2 − U + ω
)
α1 − gα2P = 0.

From Eq. (46), one can easily obtain the following coefficient matrix of α1 and α2

(
−Pg −Pη − 2Pg − k1

2 − k2
2 − k3

2 − U − ω

−Pη − 2Pg − k1
2 − k2

2 − k3
2 − U + ω −Pg

)(
α1

α2

)
=

(
0
0

)
. (47)

The coefficient matrix in Eq. (47) has a nontrivial solution if the determinant equal to zero. By expanding the determinant, we
obtain the following
(
−η2 − 4ηg − 3g2

)
P 2−4

(
k1

2 + k2
2 + k3

2 + U
) (

g +
η

2

)
P−

(
k1

2 + k2
2 + k3

2 + U − ω
) (

k1
2 + k2

2 + k3
2 + U + ω

)
= 0.

(48)
Eq. (48) has the following solutions for ω :

ω = ±
√(

Pη + 3Pg + k1
2 + k2

2 + k3
2 + U

) (
Pη + Pg + k1

2 + k2
2 + k3

2 + U
)
. (49)
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It is clear that the steady state is stable if
(
Pη + 3Pg + k1

2 + k2
2 + k3

2 + U
) (

Pη + Pg + k1
2 + k2

2 + k3
2 + U

)
> 0. Fur-

thermore, the steady state becomes unstable if
(
Pη + 3Pg + k1

2 + k2
2 + k3

2 + U
) (

Pη + Pg + k1
2 + k2

2 + k3
2 + U

)
< 0.

The MI gain spectrum is finally determined as:

G(k1) = 2Im(ω) = ±2
√(

Pη + 3Pg + k1
2 + k2

2 + k3
2 + U

) (
Pη + Pg + k1

2 + k2
2 + k3

2 + U
)
. (50)

From Fig. 4, it can be easily observed that, the modulation stability gain spectrum increases with the increase of the incidence
power P .

Figure 4: The modulation instability graphs for k2 = .1, k3 = .3, η = 1.3 in Eq. (49)

6 Conclusion
In this work we considered (3 + 1)-dimensional Gross-Pitaevskii equation (1). We first discussed the exact travelling wave
solutions with the exp function method and modified auxiliary equation approach. We have systematically get dark wave type
solution forms for (3 + 1)− dimensional Gross-Pitaevskii equation Eq.(1). Fig. 1 displays the stability analysis solutions. The
MI analysis is used to examine the stability analysis of the obtained solutions and the movement role of the waves. In order to
examine how the model looks physically, we have set up 3D, contour and density graphs for various value sets. We think the
research’s findings are innovative and will help to improve the dynamic behavior of NLEEs that are seen in nonlinear sciences.
The goal is to look into greater interaction in the future.
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Abstract  

This study investigates a nonlinear SITR system that models the dynamics of COVID-19 
by incorporating fractional-order derivatives in the sense of the Caputo definition. The model 
categorizes the population into four compartments: susceptible (S), infected (I), under treatment 
(T), and recovered (R). To analyze the fractional-order SITR system, the Laplace Adomian 
Decomposition Method (LADM) is employed. Approximate analytical solutions are obtained, 
demonstrating rapid convergence and effectively capturing the system’s behavior. The accuracy 
and applicability of the method are assessed, confirming the validity of the proposed fractional-
order model. 

Keywords: Caputo fractional derivative; Laplace Adomian decomposition; Covid-19; 

Nonlinear system. 

1.INTRODUCTION 

The COVID-19 pandemic, which emerged in late 2019, rapidly evolved into a global health 
crisis, highlighting the critical role of mathematical modeling in understanding and 
controlling infectious diseases. Epidemic models have been widely used to analyze 
transmission dynamics, forecast disease spread, and assess the effectiveness of intervention 
strategies [1–3]. Common models for COVID-19 build upon classical frameworks such as the 
Susceptible-Infected-Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) 
models. However, due to the unique characteristics of COVID-19, including asymptomatic 
cases, varying infectious periods, and treatment processes, these models have been extended 
to include additional compartments such as treatment classes, quarantine, and age or 
comorbidity-based risk factors [4–7]. 

Recently, fractional-order models and stochastic approaches have gained popularity, offering 
greater flexibility to capture memory effects, heterogeneity, and randomness in transmission 
dynamics [8–11]. Moreover, network-based models have been developed to simulate complex 
social contact structures and better predict the spread under different intervention scenarios 
[12,13]. Agent-based and data-driven models have also been used to incorporate detailed 
individual behavior and mobility patterns, improving prediction accuracy and aiding in 
targeted intervention strategies [14,15]. 

These mathematical models not only help monitor the current state of the pandemic but also 
provide critical insights for healthcare capacity planning and public health decision-making. 
This is especially important for evaluating the impact of emerging variants and vaccination 
campaigns on the course of the epidemic [3]. n this research, we are also exploring the potential 
of using the Laplace Adomian decomposition method (LADM) to solve the fractionalomputer 
virus propagation model. This method is a powerful yet straightforward approach to tackling 
epidemic models and has been successfully applied in biology, engineering, and applied 
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mathematics. It combines the Laplace transform and the Adomian decomposition method, 
offering several advantages for solving complex problems. One of the advantages of this 
method is its accuracy, as by employing the Laplace transform, it transforms the differential 
equations into algebraic equations, which are often easier to solve. This transformation reduces 
the complexity of the problem and enables the use of powerful algebraic techniques to obtain 
accurate solutions. Additionally, the Adomian decomposition method provides a systematic and 
robust approach to handling nonlinear terms, allowing for accurate approximation of the 
solution even in the presence of nonlinearity. This method does not require any perturbation or 
linearization, nor does it need a defined size of the step like the Rung-Kutta of order 4 technique. 
Various models have already been solved using this particular technique, such as HIV infection 
of CD4+ T cells model [16], fractional-order smoking model [17], epidemic childhood diseases 
[18], Radhakrishnan–Kundu–Lakshmanan equation [19], Asian option pricing model [20], 
Burger’s equation [21], Chen-Lee-Liu equation [22], prey-predator model [23], nonlinear 
fractional smoking mathematical model [24], HIV model [25], Smoking epidemic model [26], 
fractional-order co-infection SEIR model [27]. 

2.Model formulation 

Mathematical models are crucial for understanding and predicting the spread of infectious 
diseases. These models typically use differential equations to describe how infections evolve 
over time. They consider population groups such as susceptible, asymptomatic, infected, and 
recovered individuals, along with disease characteristics and intervention strategies. 
Parameters quantify transmission and recovery rates, while equations capture the dynamics of 
these groups. Through mathematical analysis and computer simulations, such models reveal 
the core mechanisms driving epidemics and support public health officials in designing 
effective control measures. 

 The proposed fractional SITR model can be expressed as follows: 

The SITR model for COVID-19 dynamics categorizes the population into four classes: 
susceptible (𝑆𝑆), infected (𝐼𝐼), treatment (𝑇𝑇), and recovered (𝑅𝑅). The susceptible class is 
further divided into two subgroups: 𝑆𝑆1(𝑡𝑡), representing individuals not affected by COVID-
19, and 𝑆𝑆2(𝑡𝑡), representing individuals not infected but with pre-existing conditions or 
advanced age. The infected class 𝐼𝐼(𝑡𝑡) includes those currently infected with COVID-19. The 
treatment class T(t) represents individuals undergoing medical care, and the recovered class 
𝑅𝑅(𝑡𝑡) includes those who have recovered from the disease. The mathematical model 
describing the dynamics of these classes is presented as follows [10]: 

 
𝑆𝑆1

′(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆1(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡)− ∝ 𝑆𝑆1(𝑡𝑡),  

𝑆𝑆2
′(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆2(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡) − 𝛼𝛼 𝑆𝑆2(𝑡𝑡), 

𝐼𝐼′(𝑡𝑡) = −𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝛽𝛽𝛽𝛽(𝑡𝑡)(𝑆𝑆1(𝑡𝑡) +  𝑆𝑆2(𝑡𝑡))− ∝ 𝐼𝐼(𝑡𝑡) + 𝛽𝛽𝛽𝛽𝛽𝛽(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡),  

𝑇𝑇′(𝑡𝑡) = 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡)−∝  𝑇𝑇(𝑡𝑡) +  𝜓𝜓𝜓𝜓(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡), 

𝑅𝑅′(𝑡𝑡) = −∝ 𝑅𝑅(𝑡𝑡) + 𝜌𝜌𝜌𝜌(𝑡𝑡).         (2.1) 
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mathematics. It combines the Laplace transform and the Adomian decomposition method, 
offering several advantages for solving complex problems. One of the advantages of this 
method is its accuracy, as by employing the Laplace transform, it transforms the differential 
equations into algebraic equations, which are often easier to solve. This transformation reduces 
the complexity of the problem and enables the use of powerful algebraic techniques to obtain 
accurate solutions. Additionally, the Adomian decomposition method provides a systematic and 
robust approach to handling nonlinear terms, allowing for accurate approximation of the 
solution even in the presence of nonlinearity. This method does not require any perturbation or 
linearization, nor does it need a defined size of the step like the Rung-Kutta of order 4 technique. 
Various models have already been solved using this particular technique, such as HIV infection 
of CD4+ T cells model [16], fractional-order smoking model [17], epidemic childhood diseases 
[18], Radhakrishnan–Kundu–Lakshmanan equation [19], Asian option pricing model [20], 
Burger’s equation [21], Chen-Lee-Liu equation [22], prey-predator model [23], nonlinear 
fractional smoking mathematical model [24], HIV model [25], Smoking epidemic model [26], 
fractional-order co-infection SEIR model [27]. 

2.Model formulation 

Mathematical models are crucial for understanding and predicting the spread of infectious 
diseases. These models typically use differential equations to describe how infections evolve 
over time. They consider population groups such as susceptible, asymptomatic, infected, and 
recovered individuals, along with disease characteristics and intervention strategies. 
Parameters quantify transmission and recovery rates, while equations capture the dynamics of 
these groups. Through mathematical analysis and computer simulations, such models reveal 
the core mechanisms driving epidemics and support public health officials in designing 
effective control measures. 

 The proposed fractional SITR model can be expressed as follows: 

The SITR model for COVID-19 dynamics categorizes the population into four classes: 
susceptible (𝑆𝑆), infected (𝐼𝐼), treatment (𝑇𝑇), and recovered (𝑅𝑅). The susceptible class is 
further divided into two subgroups: 𝑆𝑆1(𝑡𝑡), representing individuals not affected by COVID-
19, and 𝑆𝑆2(𝑡𝑡), representing individuals not infected but with pre-existing conditions or 
advanced age. The infected class 𝐼𝐼(𝑡𝑡) includes those currently infected with COVID-19. The 
treatment class T(t) represents individuals undergoing medical care, and the recovered class 
𝑅𝑅(𝑡𝑡) includes those who have recovered from the disease. The mathematical model 
describing the dynamics of these classes is presented as follows [10]: 

 
𝑆𝑆1

′(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆1(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡)− ∝ 𝑆𝑆1(𝑡𝑡),  

𝑆𝑆2
′(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆2(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡) − 𝛼𝛼 𝑆𝑆2(𝑡𝑡), 

𝐼𝐼′(𝑡𝑡) = −𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝛽𝛽𝛽𝛽(𝑡𝑡)(𝑆𝑆1(𝑡𝑡) +  𝑆𝑆2(𝑡𝑡))− ∝ 𝐼𝐼(𝑡𝑡) + 𝛽𝛽𝛽𝛽𝛽𝛽(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡),  

𝑇𝑇′(𝑡𝑡) = 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡)−∝  𝑇𝑇(𝑡𝑡) +  𝜓𝜓𝜓𝜓(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡), 

𝑅𝑅′(𝑡𝑡) = −∝ 𝑅𝑅(𝑡𝑡) + 𝜌𝜌𝜌𝜌(𝑡𝑡).         (2.1) 

 

 

 

 

Table 1. State variables for the dynamics of the SITR model. 

 

Variable Description 

𝑆𝑆1(𝑡𝑡) Non-infected individuals 

𝑆𝑆2(𝑡𝑡) 

 

Non-infected older or major 
diseased people 

𝐼𝐼(𝑡𝑡) Rate of infected from COVID-19 

𝑅𝑅(𝑡𝑡) Recovery rate from COVID-19 

𝑇𝑇(𝑡𝑡) Treatment 
 

Table 2. Descriptions of the state variables based on the nonlinear SITR model. 

Parameter Description                                  Assigned Value 
 

𝛽𝛽  Contact rate    0.1 

𝐵𝐵 Rate of natural birth   0.3 
 

𝛿𝛿 Reduce infection from treatment 0.3 

𝜎𝜎   Fever, tiredness and dry cough rate 0.005 
 

µ Recovery rate    0.1 

∝ Death rate    0.25 
 

𝜌𝜌 Rate of infection from treatment 0.3 

𝜓𝜓 Healthy food rate   0.2 
 

𝜀𝜀 Sleep rate    0.1 

𝐴𝐴𝑗𝑗, 𝑗𝑗 =  1, … , 5  Initial conditions   (0.65,0.15,0.75,0.35,0.1) 
 



70 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

By applying the fractional derivative operator 𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐  of order 𝛼𝛼,  0 < 𝛼𝛼 ≤ 1 in the system (2.1), 

we have 

 
𝐷𝐷𝑡𝑡

𝛼𝛼
0
𝑐𝑐 𝑆𝑆1(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆1(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡)− ∝ 𝑆𝑆1(𝑡𝑡),  

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑆𝑆2(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆2(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡) − 𝛼𝛼 𝑆𝑆2(𝑡𝑡), 
𝐷𝐷𝑡𝑡

𝛼𝛼
0
𝑐𝑐 𝐼𝐼(𝑡𝑡) = −𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝛽𝛽𝛽𝛽(𝑡𝑡)(𝑆𝑆1(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡))− ∝ 𝐼𝐼(𝑡𝑡) + 𝛽𝛽𝛽𝛽𝛽𝛽(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡),  

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑇𝑇(𝑡𝑡) = 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡)−∝  𝑇𝑇(𝑡𝑡) +  𝜓𝜓𝜓𝜓(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡), 

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑅𝑅(𝑡𝑡) = −∝ 𝑅𝑅(𝑡𝑡) + 𝜌𝜌𝜌𝜌(𝑡𝑡).         (2.2) 

 
İntial condition 

𝑆𝑆1(0) = 𝐴𝐴1, 𝑆𝑆2(0) = 𝐴𝐴2, 𝐼𝐼(0) = 𝐴𝐴3, 𝑇𝑇(0) = 𝐴𝐴4, 𝑅𝑅(0) =  𝐴𝐴5.     (2.3) 

 

3.Basic Definitions 

In this section, we will introduce some basic definitions and properties of the theory of 
fractional calculus that will be later.  

Definition 3.1  A real function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space 𝐶𝐶𝜇𝜇, 𝜇𝜇𝜇𝜇𝜇𝜇 if there exists a 
real number 𝑃𝑃 > 𝜇𝜇 such that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑝𝑝𝑓𝑓1(𝑥𝑥) where 𝑓𝑓1(𝑥𝑥)𝜖𝜖𝜖𝜖[0, ∞). Clearly 𝐶𝐶𝜇𝜇 < 𝐶𝐶𝛽𝛽 if  𝜇𝜇 <
𝛽𝛽.  

Definition 3.2  A function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space𝐶𝐶𝜇𝜇
𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚⋃{0} if 𝑓𝑓(𝑚𝑚) ∈ 𝐶𝐶𝜇𝜇.  

Definition 3.3 [25] The Riemann-Liouville fractional integral operator of the order 𝛼𝛼 > 0 of a 
function, 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1 is defined as 

(𝐽𝐽𝑎𝑎
𝛼𝛼𝑓𝑓)(𝑥𝑥) = 1

𝛤𝛤(𝛼𝛼) ∫𝑥𝑥
𝑎𝑎 (𝑥𝑥 − 𝜏𝜏)𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑, 𝑥𝑥  > 𝑎𝑎,                          (3.1)

                                                          

(𝐽𝐽𝑎𝑎
0𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥).                                  (3.2)                                                                                                                             

All the properties of the operator 𝐽𝐽𝛼𝛼 can be found in [19] which we mention only the 
following, for 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1, 𝛼𝛼, 𝛽𝛽 ≥ 0, rand 𝛾𝛾 > −1 we have  

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎
𝛼𝛼+𝛽𝛽𝑓𝑓)(𝑥𝑥),                                                                                                  (3.3) 

                                                                          

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎
𝛽𝛽𝐽𝐽𝑎𝑎

𝛼𝛼𝑓𝑓)(𝑥𝑥)                                                                                                    (3.4) 

𝐽𝐽𝑎𝑎
𝛼𝛼𝑥𝑥𝛾𝛾 = 𝛤𝛤(𝛾𝛾+1)

𝛤𝛤(𝛼𝛼+𝛾𝛾+1) 𝑥𝑥𝛼𝛼+𝛾𝛾.                                                                                                          (3.5) 
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By applying the fractional derivative operator 𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐  of order 𝛼𝛼,  0 < 𝛼𝛼 ≤ 1 in the system (2.1), 

we have 

 
𝐷𝐷𝑡𝑡

𝛼𝛼
0
𝑐𝑐 𝑆𝑆1(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆1(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡)− ∝ 𝑆𝑆1(𝑡𝑡),  

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑆𝑆2(𝑡𝑡) =  𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆2(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡) − 𝛼𝛼 𝑆𝑆2(𝑡𝑡), 
𝐷𝐷𝑡𝑡

𝛼𝛼
0
𝑐𝑐 𝐼𝐼(𝑡𝑡) = −𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝛽𝛽𝛽𝛽(𝑡𝑡)(𝑆𝑆1(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡))− ∝ 𝐼𝐼(𝑡𝑡) + 𝛽𝛽𝛽𝛽𝛽𝛽(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡),  

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑇𝑇(𝑡𝑡) = 𝜇𝜇𝜇𝜇(𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑡𝑡)−∝  𝑇𝑇(𝑡𝑡) +  𝜓𝜓𝜓𝜓(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡), 

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑅𝑅(𝑡𝑡) = −∝ 𝑅𝑅(𝑡𝑡) + 𝜌𝜌𝜌𝜌(𝑡𝑡).         (2.2) 

 
İntial condition 

𝑆𝑆1(0) = 𝐴𝐴1, 𝑆𝑆2(0) = 𝐴𝐴2, 𝐼𝐼(0) = 𝐴𝐴3, 𝑇𝑇(0) = 𝐴𝐴4, 𝑅𝑅(0) =  𝐴𝐴5.     (2.3) 

 

3.Basic Definitions 

In this section, we will introduce some basic definitions and properties of the theory of 
fractional calculus that will be later.  

Definition 3.1  A real function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space 𝐶𝐶𝜇𝜇, 𝜇𝜇𝜇𝜇𝜇𝜇 if there exists a 
real number 𝑃𝑃 > 𝜇𝜇 such that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑝𝑝𝑓𝑓1(𝑥𝑥) where 𝑓𝑓1(𝑥𝑥)𝜖𝜖𝜖𝜖[0, ∞). Clearly 𝐶𝐶𝜇𝜇 < 𝐶𝐶𝛽𝛽 if  𝜇𝜇 <
𝛽𝛽.  

Definition 3.2  A function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space𝐶𝐶𝜇𝜇
𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚⋃{0} if 𝑓𝑓(𝑚𝑚) ∈ 𝐶𝐶𝜇𝜇.  

Definition 3.3 [25] The Riemann-Liouville fractional integral operator of the order 𝛼𝛼 > 0 of a 
function, 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1 is defined as 

(𝐽𝐽𝑎𝑎
𝛼𝛼𝑓𝑓)(𝑥𝑥) = 1

𝛤𝛤(𝛼𝛼) ∫𝑥𝑥
𝑎𝑎 (𝑥𝑥 − 𝜏𝜏)𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑, 𝑥𝑥  > 𝑎𝑎,                          (3.1)

                                                          

(𝐽𝐽𝑎𝑎
0𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥).                                  (3.2)                                                                                                                             

All the properties of the operator 𝐽𝐽𝛼𝛼 can be found in [19] which we mention only the 
following, for 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1, 𝛼𝛼, 𝛽𝛽 ≥ 0, rand 𝛾𝛾 > −1 we have  

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎
𝛼𝛼+𝛽𝛽𝑓𝑓)(𝑥𝑥),                                                                                                  (3.3) 

                                                                          

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎
𝛽𝛽𝐽𝐽𝑎𝑎

𝛼𝛼𝑓𝑓)(𝑥𝑥)                                                                                                    (3.4) 

𝐽𝐽𝑎𝑎
𝛼𝛼𝑥𝑥𝛾𝛾 = 𝛤𝛤(𝛾𝛾+1)

𝛤𝛤(𝛼𝛼+𝛾𝛾+1) 𝑥𝑥𝛼𝛼+𝛾𝛾.                                                                                                          (3.5) 

The basic definition of the Riemann–Louville fractional derivative possesses some advantages 
over other definitions when used to simulate real-world phenomena in the form of a 
fractional-type differential equation.  

Definition 3.4 [26] The fractional derivative of the function 𝑓𝑓(𝑥𝑥) in Caputo’s sense is defined 
as 

(𝐷𝐷𝛼𝛼
𝑎𝑎𝑓𝑓) (𝑥𝑥) = (𝐽𝐽𝑚𝑚 − 𝛼𝛼

𝑎𝑎 𝐷𝐷𝑚𝑚𝑓𝑓) (𝑥𝑥) = 1
𝛤𝛤(𝑚𝑚−𝑎𝑎) ∫ (𝑥𝑥 − 𝑡𝑡)𝑚𝑚−𝛼𝛼−1𝑓𝑓(𝑚𝑚)(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥

𝑎𝑎 ,   for 𝑚𝑚 − 1 < 𝛼𝛼 <
𝑚𝑚, 𝑚𝑚 ∈ 𝑁𝑁, 𝑥𝑥 > 0.                 (3.6)  

Lemma 3.1 If−1 < 𝛼𝛼 < 𝑚𝑚 , 𝑚𝑚 ∈ N and 𝜇𝜇 ≥ −1, then 

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐷𝐷𝑎𝑎

𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − ∑𝑚𝑚−1
𝑘𝑘=0 𝑓𝑓𝑘𝑘(𝑎𝑎) ((𝑥𝑥−𝑎𝑎)𝑘𝑘

𝑘𝑘! ) , 𝑎𝑎 ≥ 0                                                          (3.7) 

(𝐷𝐷𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                                                                                             (3.8) 

 

4.Laplace Adomian Decomposition Method 

This section will illustrate the basic steps for the Laplace Adomian decomposition method 

(LADM). We first need the following definitions.  

Definition 4.1 [27] A function 𝑓𝑓 on 0 ≤ 𝑡𝑡 < ∞ is exponentially bounded of order 𝜎𝜎 ∈ 𝑅𝑅 if 

satisfies ∥ 𝑓𝑓(𝑡𝑡) ∥≤ 𝑀𝑀𝑒𝑒𝜎𝜎𝜎𝜎, for some real constant 𝑀𝑀 > 0. 

Definition 3.2  The Caputo fractional derivative is defined as follows: 

𝐿𝐿{𝐷𝐷𝜎𝜎𝑓𝑓(𝑡𝑡)} = 𝑠𝑠𝜎𝜎𝐿𝐿{𝑓𝑓(𝑡𝑡)} − ∑
𝑚𝑚

𝑘𝑘=0
𝑠𝑠𝜎𝜎−𝑘𝑘−1𝑓𝑓(𝑘𝑘)(0), 

(4.a) 

where 𝑚𝑚 = 𝜎𝜎 + 1, and [𝛼𝛼] represents the integer part of 𝜎𝜎.   As a result, the following useful 

formula is obtained: 

𝐿𝐿(𝑡𝑡𝜎𝜎) = 𝛤𝛤(𝜎𝜎+1)
𝑠𝑠(𝜎𝜎+1) ,    𝜎𝜎 ∈ 𝑅𝑅+.         (4.b) 

The last-mentioned definitions can be used in this section to discuss the general procedures for 

solving the proposed mathematical model (2.2).  First of all, the Laplace transform is applied 

to both lift-hand and right-hand sides of Eq. (2.2) in the following form: 

 

 

𝐿𝐿( 𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑆𝑆1(𝑡𝑡)) = 𝐿𝐿 (𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆1(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡)− ∝ 𝑆𝑆1(𝑡𝑡)),  
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𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑆𝑆2(𝑡𝑡) = 𝐿𝐿( 𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆2(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡) − 𝛼𝛼 𝑆𝑆2(𝑡𝑡)), 
𝐷𝐷𝑡𝑡

𝛼𝛼
0
𝑐𝑐 𝐼𝐼(𝑡𝑡) = 𝐿𝐿(−𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝛽𝛽𝛽𝛽(𝑡𝑡)(𝑆𝑆1(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡))− ∝ 𝐼𝐼(𝑡𝑡) + 𝛽𝛽𝛽𝛽𝛽𝛽(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡)),  

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑇𝑇(𝑡𝑡) = 𝐿𝐿( 𝜇𝜇𝜇𝜇 −  𝜌𝜌𝜌𝜌−∝ 𝑇𝑇 +  𝜓𝜓𝜓𝜓 +  𝜀𝜀𝜀𝜀), 

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑅𝑅(𝑡𝑡) =  𝐿𝐿(−∝ 𝑅𝑅(𝑡𝑡) +  𝜌𝜌𝜌𝜌(𝑡𝑡)).        (4.1) 

By applying the formula (4.a) to Eq. (4.1), we get  

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆1) − 𝑠𝑠𝛼𝛼−1𝑆𝑆1(0) = 𝐵𝐵
𝑠𝑠  −  𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆1) −  𝛿𝛿𝛿𝛿 𝐿𝐿(𝑇𝑇)− ∝ 𝐿𝐿(𝑆𝑆1), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆2) − 𝑠𝑠𝛼𝛼−1𝑆𝑆2(0) = 𝐵𝐵
𝑠𝑠 − 𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆2) −  𝛿𝛿𝛿𝛿𝛿𝛿(𝑇𝑇) − 𝛼𝛼𝛼𝛼(𝑆𝑆2), 

𝑠𝑠𝛼𝛼𝐿𝐿(I) − 𝑠𝑠𝛼𝛼−1𝐼𝐼(0) = −𝜇𝜇𝜇𝜇(𝐼𝐼) +  𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆1) + 𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆2)− ∝ 𝐿𝐿(𝐼𝐼) +  𝛽𝛽𝛽𝛽𝛽𝛽(𝑇𝑇) +  𝜎𝜎𝜎𝜎(𝐼𝐼), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑇𝑇) − 𝑠𝑠𝛼𝛼−1𝑇𝑇(0) =  𝜇𝜇L(𝐼𝐼) −  𝜌𝜌L(𝑇𝑇)−∝ L(𝑇𝑇) +  𝜓𝜓L(𝑇𝑇) + 𝜀𝜀L(𝑇𝑇), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑅𝑅) − 𝑠𝑠𝛼𝛼−1𝑅𝑅(0) = −∝ 𝐿𝐿(𝑅𝑅) +  𝜌𝜌𝜌𝜌(𝑇𝑇).             (4.2) 

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get  

 

𝐿𝐿(𝑆𝑆1) = 𝐴𝐴1
𝑠𝑠 + 𝐵𝐵

𝑠𝑠𝛼𝛼+1 − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆1) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼  𝐿𝐿(𝑇𝑇) −  ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆1), 

𝐿𝐿(𝑆𝑆2) = 𝐴𝐴2
𝑠𝑠 + 𝐵𝐵

𝑠𝑠𝛼𝛼+1 − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆2) − 𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇) − 𝛼𝛼
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆2), 

𝐿𝐿(I) = 𝐴𝐴3
𝑠𝑠 + −𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼) + 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆1) + 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆2) −  ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼) +  𝛽𝛽

𝑠𝑠𝛼𝛼 𝛿𝛿𝛿𝛿(𝑇𝑇) +  𝜎𝜎
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼), 

𝐿𝐿(𝑇𝑇) = 𝐴𝐴4
𝑠𝑠 +  𝜇𝜇

𝑠𝑠𝛼𝛼 L(𝐼𝐼) −  𝜌𝜌
𝑠𝑠𝛼𝛼 L(𝑇𝑇) − ∝

𝑠𝑠𝛼𝛼 L(𝑇𝑇) + 𝜓𝜓
𝑠𝑠𝛼𝛼 L(𝑇𝑇) + 𝜀𝜀

𝑠𝑠𝛼𝛼 L(𝑇𝑇), 

𝐿𝐿(𝑅𝑅) = 𝐴𝐴5
𝑠𝑠 − ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅) +  𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇).         (4.3) 

The proposed method gives the solution as an infinite series. Let the values of 𝐶𝐶 = 𝐼𝐼𝑠𝑠1 and 
𝐷𝐷 = 𝐼𝐼𝑠𝑠2 to be able to apply the Adomian decomposition method. We consider the solution as 
an infinite series in the form 

𝑆𝑆1(𝑡𝑡) = ∑ 𝑆𝑆1,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
, 𝑆𝑆2(𝑡𝑡) = ∑ 𝑆𝑆2,𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
, 𝐼𝐼(𝑡𝑡) = ∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
, 𝑇𝑇(𝑡𝑡) = ∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
,   

𝑅𝑅(𝑡𝑡) = ∑ 𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
. 

(4.4) 

Then, by decomposing the nonlinear part named 𝐶𝐶 in the following form  
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𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑆𝑆2(𝑡𝑡) = 𝐿𝐿( 𝐵𝐵 − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝑆𝑆2(𝑡𝑡) − 𝛿𝛿𝛿𝛿 𝑇𝑇(𝑡𝑡) − 𝛼𝛼 𝑆𝑆2(𝑡𝑡)), 
𝐷𝐷𝑡𝑡

𝛼𝛼
0
𝑐𝑐 𝐼𝐼(𝑡𝑡) = 𝐿𝐿(−𝜇𝜇𝜇𝜇(𝑡𝑡) + 𝛽𝛽𝛽𝛽(𝑡𝑡)(𝑆𝑆1(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡))− ∝ 𝐼𝐼(𝑡𝑡) + 𝛽𝛽𝛽𝛽𝛽𝛽(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡)),  

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑇𝑇(𝑡𝑡) = 𝐿𝐿( 𝜇𝜇𝜇𝜇 −  𝜌𝜌𝜌𝜌−∝ 𝑇𝑇 +  𝜓𝜓𝜓𝜓 +  𝜀𝜀𝜀𝜀), 

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑅𝑅(𝑡𝑡) =  𝐿𝐿(−∝ 𝑅𝑅(𝑡𝑡) +  𝜌𝜌𝜌𝜌(𝑡𝑡)).        (4.1) 

By applying the formula (4.a) to Eq. (4.1), we get  

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆1) − 𝑠𝑠𝛼𝛼−1𝑆𝑆1(0) = 𝐵𝐵
𝑠𝑠  −  𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆1) −  𝛿𝛿𝛿𝛿 𝐿𝐿(𝑇𝑇)− ∝ 𝐿𝐿(𝑆𝑆1), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆2) − 𝑠𝑠𝛼𝛼−1𝑆𝑆2(0) = 𝐵𝐵
𝑠𝑠 − 𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆2) −  𝛿𝛿𝛿𝛿𝛿𝛿(𝑇𝑇) − 𝛼𝛼𝛼𝛼(𝑆𝑆2), 

𝑠𝑠𝛼𝛼𝐿𝐿(I) − 𝑠𝑠𝛼𝛼−1𝐼𝐼(0) = −𝜇𝜇𝜇𝜇(𝐼𝐼) +  𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆1) + 𝛽𝛽𝛽𝛽(𝐼𝐼𝑆𝑆2)− ∝ 𝐿𝐿(𝐼𝐼) +  𝛽𝛽𝛽𝛽𝛽𝛽(𝑇𝑇) +  𝜎𝜎𝜎𝜎(𝐼𝐼), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑇𝑇) − 𝑠𝑠𝛼𝛼−1𝑇𝑇(0) =  𝜇𝜇L(𝐼𝐼) −  𝜌𝜌L(𝑇𝑇)−∝ L(𝑇𝑇) +  𝜓𝜓L(𝑇𝑇) + 𝜀𝜀L(𝑇𝑇), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑅𝑅) − 𝑠𝑠𝛼𝛼−1𝑅𝑅(0) = −∝ 𝐿𝐿(𝑅𝑅) +  𝜌𝜌𝜌𝜌(𝑇𝑇).             (4.2) 

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get  

 

𝐿𝐿(𝑆𝑆1) = 𝐴𝐴1
𝑠𝑠 + 𝐵𝐵

𝑠𝑠𝛼𝛼+1 − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆1) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼  𝐿𝐿(𝑇𝑇) −  ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆1), 

𝐿𝐿(𝑆𝑆2) = 𝐴𝐴2
𝑠𝑠 + 𝐵𝐵

𝑠𝑠𝛼𝛼+1 − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆2) − 𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇) − 𝛼𝛼
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆2), 

𝐿𝐿(I) = 𝐴𝐴3
𝑠𝑠 + −𝜇𝜇

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼) + 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆1) + 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑆𝑆2) −  ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼) +  𝛽𝛽

𝑠𝑠𝛼𝛼 𝛿𝛿𝛿𝛿(𝑇𝑇) +  𝜎𝜎
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼), 

𝐿𝐿(𝑇𝑇) = 𝐴𝐴4
𝑠𝑠 +  𝜇𝜇

𝑠𝑠𝛼𝛼 L(𝐼𝐼) −  𝜌𝜌
𝑠𝑠𝛼𝛼 L(𝑇𝑇) − ∝

𝑠𝑠𝛼𝛼 L(𝑇𝑇) + 𝜓𝜓
𝑠𝑠𝛼𝛼 L(𝑇𝑇) + 𝜀𝜀

𝑠𝑠𝛼𝛼 L(𝑇𝑇), 

𝐿𝐿(𝑅𝑅) = 𝐴𝐴5
𝑠𝑠 − ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅) +  𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇).         (4.3) 

The proposed method gives the solution as an infinite series. Let the values of 𝐶𝐶 = 𝐼𝐼𝑠𝑠1 and 
𝐷𝐷 = 𝐼𝐼𝑠𝑠2 to be able to apply the Adomian decomposition method. We consider the solution as 
an infinite series in the form 

𝑆𝑆1(𝑡𝑡) = ∑ 𝑆𝑆1,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
, 𝑆𝑆2(𝑡𝑡) = ∑ 𝑆𝑆2,𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
, 𝐼𝐼(𝑡𝑡) = ∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
, 𝑇𝑇(𝑡𝑡) = ∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
,   

𝑅𝑅(𝑡𝑡) = ∑ 𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
. 

(4.4) 

Then, by decomposing the nonlinear part named 𝐶𝐶 in the following form  

  𝐶𝐶 = ∑ 𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
,     𝐷𝐷 = ∑ 𝐷𝐷𝑛𝑛

∞

𝑛𝑛=0
. 

           (4.5) 

 

Here, 𝐶𝐶𝑛𝑛 and 𝐷𝐷𝑛𝑛 can be computed using the convolution operation as 

𝐶𝐶𝑛𝑛 = 1
𝛤𝛤(𝑛𝑛 + 1)

𝑑𝑑𝑛𝑛

𝑑𝑑𝜀𝜀𝑛𝑛 [∑ 𝜀𝜀𝑖𝑖𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=0
∑ 𝜀𝜀𝑖𝑖𝑆𝑆1,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
]

𝜀𝜀=0

, 

𝐷𝐷𝑛𝑛 = 1
𝛤𝛤(𝑛𝑛 + 1)

𝑑𝑑𝑛𝑛

𝑑𝑑𝜀𝜀𝑛𝑛 [∑ 𝜀𝜀𝑖𝑖𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=0
∑ 𝜀𝜀𝑖𝑖𝑆𝑆2,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
]

𝜀𝜀=0

, 

              (4.6) 

By substituting Eq. (4.4- 4.6) into Eq. (4.3) we have resulted in the form.  
 

𝐿𝐿 (∑ 𝑆𝑆1,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝐴𝐴1

𝑠𝑠 + 𝐵𝐵
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼  𝐿𝐿 (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) −  ∝

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝑆𝑆1,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿 (∑ 𝑆𝑆2,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝐴𝐴2

𝑠𝑠 + 𝐵𝐵
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐷𝐷𝑛𝑛

∞

𝑛𝑛=0
) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − 𝛼𝛼

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝑆𝑆2,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝐴𝐴3

𝑠𝑠 + −𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
) +  𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
) + 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐷𝐷𝑛𝑛

∞

𝑛𝑛=0
) − ∝

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) 

+ 𝛽𝛽
𝑠𝑠𝛼𝛼 𝛿𝛿𝛿𝛿 (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
) +  𝜎𝜎

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿 (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝐴𝐴4

𝑠𝑠 +  𝜇𝜇
𝑠𝑠𝛼𝛼 L (∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
) −  𝜌𝜌

𝑠𝑠𝛼𝛼 L (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) − ∝

𝑠𝑠𝛼𝛼 L (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) 

+ 𝜓𝜓
𝑠𝑠𝛼𝛼 L (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
) + 𝜀𝜀

𝑠𝑠𝛼𝛼 L (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
), 

𝐿𝐿 (∑ 𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
) = 𝐴𝐴5

𝑠𝑠 − ∝
𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝑅𝑅𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
) + 𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿 (∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
). 

            (4.7) 

 

Then, matching the two sides of Eq. (4.7) yields the following iterative algorithm 

𝑆𝑆1,0 = 𝐴𝐴1
𝑠𝑠 , 𝑆𝑆2,0 = 𝐴𝐴2

𝑠𝑠 , 𝐼𝐼0 = 𝐴𝐴3
𝑠𝑠 , 𝑇𝑇0 = 𝐴𝐴4

𝑠𝑠 , 𝑅𝑅0 = 𝐴𝐴5
𝑠𝑠 , 
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𝐿𝐿(𝑆𝑆1,1) = 𝐵𝐵
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) −  𝛿𝛿𝛿𝛿
𝑠𝑠𝛼𝛼  𝐿𝐿(𝑇𝑇0) −  ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆1,0), 

𝐿𝐿(𝑆𝑆2,1) = 𝐵𝐵
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷0) − 𝛿𝛿𝛿𝛿
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇0) − 𝛼𝛼

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆2,0), 

𝐿𝐿(I1) = −𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0) +  𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) + 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷0) −  ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0) +  𝛽𝛽
𝑠𝑠𝛼𝛼 𝛿𝛿𝛿𝛿(𝑇𝑇0) +  𝜎𝜎

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0), 

𝐿𝐿(𝑇𝑇1) =  𝜇𝜇
𝑠𝑠𝛼𝛼 L(𝐼𝐼0) − 𝜌𝜌

𝑠𝑠𝛼𝛼 L(𝑇𝑇0) − ∝
𝑠𝑠𝛼𝛼 L(𝑇𝑇0) + 𝜓𝜓

𝑠𝑠𝛼𝛼 L(𝑇𝑇0) + 𝜀𝜀
𝑠𝑠𝛼𝛼 L(𝑇𝑇0), 

𝐿𝐿(𝑅𝑅1) = − ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0) +  𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇0), …, 

𝐿𝐿(𝑆𝑆1,𝑛𝑛) = − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼  𝐿𝐿(𝑇𝑇𝑛𝑛−1) −  ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆1,𝑛𝑛−1), 

𝐿𝐿(𝑆𝑆2,𝑛𝑛) = − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷𝑛𝑛−1) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇𝑛𝑛−1) − 𝛼𝛼
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆2,𝑛𝑛−1), 

𝐿𝐿(I𝑛𝑛) = −𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1) +  𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) + 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷𝑛𝑛−1) −  ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1) +  𝛽𝛽
𝑠𝑠𝛼𝛼 𝛿𝛿𝛿𝛿(𝑇𝑇𝑛𝑛−1) +  𝜎𝜎

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1), 

𝐿𝐿(𝑇𝑇𝑛𝑛) =  𝜇𝜇
𝑠𝑠𝛼𝛼 L(𝐼𝐼𝑛𝑛−1) −  𝜌𝜌

𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1) − ∝
𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1) + 𝜓𝜓

𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1) + 𝜀𝜀
𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1), 

𝐿𝐿(𝑅𝑅𝑛𝑛) = − ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝑛𝑛−1) +  𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇𝑛𝑛−1). 

                             (4.8) 

Finally, by taking the inverse transform of Eq. (4.8), we have the following equation  

𝑆𝑆1,0 = 𝐴𝐴1, 𝑆𝑆2,0 = 𝐴𝐴2, 𝐼𝐼0 = 𝐴𝐴3, 𝑇𝑇0 = 𝐴𝐴4, 𝑅𝑅0 = 𝐴𝐴5, 

𝑆𝑆1,1 = [𝐵𝐵 − 𝛽𝛽𝐶𝐶0 − 𝛿𝛿𝛿𝛿 𝑇𝑇0− ∝ 𝑆𝑆1,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑆𝑆2,1 = [𝐵𝐵 − 𝛽𝛽𝐷𝐷0 − 𝛿𝛿𝛿𝛿𝑇𝑇0 − 𝛼𝛼𝑆𝑆2,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

I1 = [−𝜇𝜇𝐼𝐼0 +  𝛽𝛽𝐶𝐶0 + 𝛽𝛽𝐷𝐷0− ∝ 𝐼𝐼0 +  𝛽𝛽𝛽𝛽𝑇𝑇0 + 𝜎𝜎𝐼𝐼0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑇𝑇1 = [ 𝜇𝜇𝐼𝐼0 −  𝜌𝜌𝑇𝑇0−∝ 𝑇𝑇0 +  𝜓𝜓𝑇𝑇0 + 𝜀𝜀𝑇𝑇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑅𝑅1 = [−∝ 𝑅𝑅0 +  𝜌𝜌𝑇𝑇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) , …, 

𝑆𝑆1,𝑛𝑛 = [−𝛽𝛽𝐶𝐶𝑛𝑛−1 − 𝛿𝛿𝛿𝛿𝑇𝑇𝑛𝑛−1− ∝ 𝑆𝑆1,𝑛𝑛−1] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 
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𝐿𝐿(𝑆𝑆1,1) = 𝐵𝐵
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) −  𝛿𝛿𝛿𝛿
𝑠𝑠𝛼𝛼  𝐿𝐿(𝑇𝑇0) −  ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆1,0), 

𝐿𝐿(𝑆𝑆2,1) = 𝐵𝐵
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷0) − 𝛿𝛿𝛿𝛿
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇0) − 𝛼𝛼

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆2,0), 

𝐿𝐿(I1) = −𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0) +  𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) + 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷0) −  ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0) +  𝛽𝛽
𝑠𝑠𝛼𝛼 𝛿𝛿𝛿𝛿(𝑇𝑇0) +  𝜎𝜎

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼0), 

𝐿𝐿(𝑇𝑇1) =  𝜇𝜇
𝑠𝑠𝛼𝛼 L(𝐼𝐼0) − 𝜌𝜌

𝑠𝑠𝛼𝛼 L(𝑇𝑇0) − ∝
𝑠𝑠𝛼𝛼 L(𝑇𝑇0) + 𝜓𝜓

𝑠𝑠𝛼𝛼 L(𝑇𝑇0) + 𝜀𝜀
𝑠𝑠𝛼𝛼 L(𝑇𝑇0), 

𝐿𝐿(𝑅𝑅1) = − ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅0) +  𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇0), …, 

𝐿𝐿(𝑆𝑆1,𝑛𝑛) = − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼  𝐿𝐿(𝑇𝑇𝑛𝑛−1) −  ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆1,𝑛𝑛−1), 

𝐿𝐿(𝑆𝑆2,𝑛𝑛) = − 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷𝑛𝑛−1) −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇𝑛𝑛−1) − 𝛼𝛼
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆2,𝑛𝑛−1), 

𝐿𝐿(I𝑛𝑛) = −𝜇𝜇
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1) +  𝛽𝛽

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) + 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐷𝐷𝑛𝑛−1) −  ∝

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1) +  𝛽𝛽
𝑠𝑠𝛼𝛼 𝛿𝛿𝛿𝛿(𝑇𝑇𝑛𝑛−1) +  𝜎𝜎

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑛𝑛−1), 

𝐿𝐿(𝑇𝑇𝑛𝑛) =  𝜇𝜇
𝑠𝑠𝛼𝛼 L(𝐼𝐼𝑛𝑛−1) −  𝜌𝜌

𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1) − ∝
𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1) + 𝜓𝜓

𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1) + 𝜀𝜀
𝑠𝑠𝛼𝛼 L(𝑇𝑇𝑛𝑛−1), 

𝐿𝐿(𝑅𝑅𝑛𝑛) = − ∝
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝑛𝑛−1) +  𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑇𝑇𝑛𝑛−1). 

                             (4.8) 

Finally, by taking the inverse transform of Eq. (4.8), we have the following equation  

𝑆𝑆1,0 = 𝐴𝐴1, 𝑆𝑆2,0 = 𝐴𝐴2, 𝐼𝐼0 = 𝐴𝐴3, 𝑇𝑇0 = 𝐴𝐴4, 𝑅𝑅0 = 𝐴𝐴5, 

𝑆𝑆1,1 = [𝐵𝐵 − 𝛽𝛽𝐶𝐶0 − 𝛿𝛿𝛿𝛿 𝑇𝑇0− ∝ 𝑆𝑆1,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑆𝑆2,1 = [𝐵𝐵 − 𝛽𝛽𝐷𝐷0 − 𝛿𝛿𝛿𝛿𝑇𝑇0 − 𝛼𝛼𝑆𝑆2,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

I1 = [−𝜇𝜇𝐼𝐼0 +  𝛽𝛽𝐶𝐶0 + 𝛽𝛽𝐷𝐷0− ∝ 𝐼𝐼0 +  𝛽𝛽𝛽𝛽𝑇𝑇0 + 𝜎𝜎𝐼𝐼0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑇𝑇1 = [ 𝜇𝜇𝐼𝐼0 −  𝜌𝜌𝑇𝑇0−∝ 𝑇𝑇0 +  𝜓𝜓𝑇𝑇0 + 𝜀𝜀𝑇𝑇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑅𝑅1 = [−∝ 𝑅𝑅0 +  𝜌𝜌𝑇𝑇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) , …, 

𝑆𝑆1,𝑛𝑛 = [−𝛽𝛽𝐶𝐶𝑛𝑛−1 − 𝛿𝛿𝛿𝛿𝑇𝑇𝑛𝑛−1− ∝ 𝑆𝑆1,𝑛𝑛−1] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑆𝑆2,𝑛𝑛 = [− 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐷𝐷𝑛𝑛−1 −  𝛿𝛿𝛿𝛿

𝑠𝑠𝛼𝛼 𝑇𝑇𝑛𝑛−1 − 𝛼𝛼
𝑠𝑠𝛼𝛼 𝑆𝑆2,𝑛𝑛−1] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

I𝑛𝑛 = [−𝜇𝜇
𝑠𝑠𝛼𝛼 𝐼𝐼𝑛𝑛−1 + 𝛽𝛽

𝑠𝑠𝛼𝛼 𝐶𝐶𝑛𝑛−1 + 𝛽𝛽
𝑠𝑠𝛼𝛼 𝐷𝐷𝑛𝑛−1 −  ∝

𝑠𝑠𝛼𝛼 𝐼𝐼𝑛𝑛−1 +  𝛽𝛽
𝑠𝑠𝛼𝛼 𝛿𝛿𝑇𝑇𝑛𝑛−1 +  𝜎𝜎

𝑠𝑠𝛼𝛼 𝐼𝐼𝑛𝑛−1] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑇𝑇𝑛𝑛 =  [ 𝜇𝜇
𝑠𝑠𝛼𝛼 𝐼𝐼𝑛𝑛−1 − 𝜌𝜌

𝑠𝑠𝛼𝛼 𝑇𝑇𝑛𝑛−1 − ∝
𝑠𝑠𝛼𝛼 𝑇𝑇𝑛𝑛−1 + 𝜓𝜓

𝑠𝑠𝛼𝛼 𝑇𝑇𝑛𝑛−1 + 𝜀𝜀
𝑠𝑠𝛼𝛼 𝑇𝑇𝑛𝑛−1] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑅𝑅𝑛𝑛 = [− ∝
𝑠𝑠𝛼𝛼 𝑅𝑅𝑛𝑛−1 +  𝜌𝜌

𝑠𝑠𝛼𝛼 𝑇𝑇𝑛𝑛−1] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1). 

                          (4.9) 

Similarly, at the final step, we get the rest of the terms as infinite series as, 

𝑆𝑆1(𝑡𝑡) = ∑ 𝑆𝑆1,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝐴𝐴1 + [𝐵𝐵 − 𝛽𝛽𝐶𝐶0 − 𝛿𝛿𝛿𝛿 𝑇𝑇0− ∝ 𝑆𝑆1,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯,   

𝑆𝑆2(𝑡𝑡) = ∑ 𝑆𝑆2,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝐴𝐴2 + [𝐵𝐵 − 𝛽𝛽𝐷𝐷0 − 𝛿𝛿𝛿𝛿𝑇𝑇0 − 𝛼𝛼𝑆𝑆2,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯, 

  𝐼𝐼(𝑡𝑡) = ∑ 𝐼𝐼𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝐴𝐴3 + [−𝜇𝜇𝐼𝐼0 +  𝛽𝛽𝐶𝐶0 + 𝛽𝛽𝐷𝐷0− ∝ 𝐼𝐼0 +  𝛽𝛽𝛽𝛽𝑇𝑇0 + 𝜎𝜎𝐼𝐼0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯,  

 𝑇𝑇(𝑡𝑡) = ∑ 𝑇𝑇𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝐴𝐴4 + [ 𝜇𝜇𝐼𝐼0 −  𝜌𝜌𝑇𝑇0−∝ 𝑇𝑇0 +  𝜓𝜓𝑇𝑇0 + 𝜀𝜀𝑇𝑇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯,   

𝑅𝑅(𝑡𝑡) = ∑ 𝑅𝑅𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝐴𝐴5 + [−∝ 𝑅𝑅0 +  𝜌𝜌𝑇𝑇0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯. 

                  (4.10) 

Equation (4.10) solves the main SITR model of Eq. (2.1) which will be illustrated in the next 
section. 

5.Numerical Simulations 

In this section, we test the effectiveness of the proposed technique by examining the acquired 
results for model (2.1) for different 𝛼𝛼. The numerical simulations are presented by taking 
partial parameters from numerical simulations in [10]. The results obtained by LADM match 
the exact solutions when 𝛼𝛼 =  1. Figure 2-11 provides a comparison of the results acquired 
by the LADM and the MATLAB code ODE45 (Rung-Kutta of order 4 technique) for the 
different model categories. It is evident from this figure that the proposed technique is efcient 
and accurate, as it perfectly agrees with the MATLAB code results. 
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Fig. 1 The solution of 𝑆𝑆1(𝑡𝑡), 𝑆𝑆2(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑇𝑇(𝑡𝑡) and 𝑅𝑅(𝑡𝑡) obtained by Rung-Kutta of order 4 
technique (ODE 45) for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 

 

Fig. 2 The solution of 𝑆𝑆1(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 
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Fig. 1 The solution of 𝑆𝑆1(𝑡𝑡), 𝑆𝑆2(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑇𝑇(𝑡𝑡) and 𝑅𝑅(𝑡𝑡) obtained by Rung-Kutta of order 4 
technique (ODE 45) for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 

 

Fig. 2 The solution of 𝑆𝑆1(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 

 

Fig. 3 The solution of  𝑆𝑆1(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 30. 

 

Fig. 4 The solution of 𝑆𝑆2(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 
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Fig. 5 The solution of  𝑆𝑆2(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 30. 

 

Fig. 6  The solution of 𝐼𝐼(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 
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Fig. 5 The solution of  𝑆𝑆2(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 30. 

 

Fig. 6  The solution of 𝐼𝐼(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 

 

Fig. 7 The solution of  𝐼𝐼(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 30. 

 

Fig. 8  The solution of 𝑇𝑇(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 
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Fig. 9  The solution of  𝑇𝑇(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 30. 

 

Fig. 10 The solution of 𝑅𝑅(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 
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Fig. 9  The solution of  𝑇𝑇(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 30. 

 

Fig. 10 The solution of 𝑅𝑅(𝑡𝑡) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for 
𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  30. 

 

Fig. 11 The solution of  𝑅𝑅(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 . and 0 ≤ 𝑡𝑡 ≤ 30. 

 

 

6.Conclusions 

we have presented an enhanced order of a nonlinear SITR system with COVID-19. The model 
has been effectively solved employing two different methods, namely, the Rung-Kutta of 
order 4 and the Adomian decomposition in the Laplace domain. The obtained results 
guarantee accurate solutions and are examined for varied fractional-order values of α and a 
transmission rate. All obtained findings have been compared and examined for different 
cases. Our findings and procedures in this research can be extended or generalized further in 
the resolution of other interesting nonlinear models emerging in certain phenomena in physics 
and engineering. Besides, our findings can be extended for models developed with other 
fractional derivatives. 
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Abstract  

In this study, a nonlinear SEIR system is analyzed to model the spread of the Zika virus, 
using a modified form of the Caputo fractional derivative. Analytical and approximate-
analytical solutions of the proposed model are derived using the Laplace Adomian 
Decomposition Method (LADM). The solutions are presented as rapidly converging series. 
Approximate analytical solutions are obtained, demonstrating rapid convergence and 
accurately capturing the system’s dynamics. The reliability of the method is verified, and the 
validity of the proposed fractional-order model is substantiated. 

Keywords: Caputo fractional derivative; Laplace Adomian decomposition; Zika virus; 

Nonlinear system. 

1.INTRODUCTION 

Zika virus is an RNA virus belonging to the Flaviviridae family, first identified in 1947 in the 
Zika Forest of Uganda. Although initially thought to cause only mild and self-limiting 
illnesses in humans, it became a significant global public health threat during large outbreaks 
in Latin America and the Caribbean between 2015 and 2016. These outbreaks revealed the 
virus’s association with severe neurological complications, including microcephaly in 
newborns and Guillain-Barré syndrome in adults. This led to a rapid increase in scientific 
research and the implementation of control measures [1,5]. The primary transmission vector 
of Zika virus is the Aedes aegypti mosquito; however, alternative transmission routes such as 
sexual contact and blood transfusions have also been documented, complicating the dynamics 
of disease spread [6,7]. 

To better understand the transmission dynamics of Zika virus and develop effective control 
strategies, extensive research using mathematical modeling methods has been conducted. 
Compartmental models that reflect the interactions between human and vector populations 
are commonly used to simulate the spread of the disease. For instance, Lee et al. [8] 
developed dynamic compartmental models that account for changes in both human and 
mosquito populations, allowing for a more realistic tracking of the epidemic. Rezapour and 
colleagues [9] introduced a novel mathematical framework incorporating additional 
transmission parameters to better capture the complexity of Zika spread. Additionally, 
Suantai et al. [10] used the classical SEIR (Susceptible-Exposed-Infectious-Recovered) 
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model to perform numerical simulations, providing important insights into the temporal 
progression of the epidemic. 

Beyond these basic models, more complex frameworks have been developed that include 
real-world factors such as seasonality, spatial heterogeneity, and social network structures 
[3,4]. These advanced models play a crucial role in evaluating the effectiveness of targeted 
interventions such as vector control, public awareness campaigns, and vaccination efforts, 
thereby guiding public health responses. In this research, we are also exploring the potential 
of using the Laplace Adomian decomposition method (LADM) to solve the 
fractionalomputer virus propagation model. This method is a powerful yet straightforward 
approach to tackling epidemic models and has been successfully applied in biology, 
engineering, and applied mathematics. It combines the Laplace transform and the Adomian 
decomposition method, offering several advantages for solving complex problems. One of 
the advantages of this method is its accuracy, as by employing the Laplace transform, it 
transforms the differential equations into algebraic equations, which are often easier to solve. 
This transformation reduces the complexity of the problem and enables the use of powerful 
algebraic techniques to obtain accurate solutions. Additionally, the Adomian decomposition 
method provides a systematic and robust approach to handling nonlinear terms, allowing for 
accurate approximation of the solution even in the presence of nonlinearity. This method does 
not require any perturbation or linearization, nor does it need a defined size of the step like 
the Rung-Kutta of order 4 technique. Various models have already been solved using this 
particular technique, such as HIV infection of CD4+ T cells model [11], fractional-order 
smoking model [12], epidemic childhood diseases [13], Radhakrishnan–Kundu–Lakshmanan 
equation [14], Asian option pricing model [15], Burger’s equation [16], Chen-Lee-Liu 
equation [17], prey-predator model [18], nonlinear fractional smoking mathematical model 
[19], COVID-19 model [20], HIV model [21], Smoking epidemic model [22], fractional-
order co-infection SEIR model [23]. 

2.Model formulation 

This section presents a comprehensive mathematical model that incorporates both primary 
transmission routes of the Zika virus: vector-to-human and human-to-human. The model is 
structured according to compartmental population dynamics, dividing the total human 
population, denoted as 𝑁𝑁𝐻𝐻(𝑦𝑦), into four subgroups: susceptible humans 𝑆𝑆𝐻𝐻(𝑦𝑦), exposed 
humans 𝐸𝐸𝐻𝐻(𝑦𝑦), infected humans 𝐼𝐼𝐻𝐻(𝑦𝑦), and recovered humans 𝑅𝑅𝐻𝐻(𝑦𝑦), such that: 
𝑁𝑁𝐻𝐻(𝑦𝑦) = 𝑆𝑆𝐻𝐻(𝑦𝑦) + 𝐸𝐸𝐻𝐻(𝑦𝑦) + 𝐼𝐼𝐻𝐻(𝑦𝑦) + 𝑅𝑅𝐻𝐻(𝑦𝑦). Similarly, the mosquito (vector) population, 
represented as𝑁𝑁𝑉𝑉(𝑦𝑦), is classified into three compartments: susceptible vectors 𝑆𝑆𝑉𝑉(𝑦𝑦), 
exposed vectors𝐸𝐸𝑉𝑉(𝑦𝑦), and infected vectors𝐼𝐼𝑁𝑁(𝑦𝑦), satisfying the relation: 
𝑁𝑁𝑉𝑉(𝑦𝑦) = 𝑆𝑆𝑉𝑉(𝑦𝑦) + 𝐸𝐸𝑉𝑉(𝑦𝑦) + 𝐼𝐼𝑉𝑉(𝑦𝑦) + 𝑅𝑅𝑉𝑉(𝑦𝑦). The resulting nonlinear SEIR-based model 
captures the dynamics of Zika virus transmission between and within species, and the 
governing differential equations are formally presented in Equation (2.1). A detailed 
representation of the compartmental interactions and transmission mechanisms is outlined in 
Table 1, following the structure described in [10]. 

𝑆𝑆𝐻𝐻′(𝑡𝑡) = 𝐴𝐴𝐻𝐻 − 𝑆𝑆𝐻𝐻(𝑡𝑡)𝛽𝛽𝐻𝐻(𝐼𝐼𝑉𝑉(𝑡𝑡) + 𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡)) − 𝜇𝜇𝑆𝑆𝐻𝐻(𝑡𝑡),     



879th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

   
 

model to perform numerical simulations, providing important insights into the temporal 
progression of the epidemic. 

Beyond these basic models, more complex frameworks have been developed that include 
real-world factors such as seasonality, spatial heterogeneity, and social network structures 
[3,4]. These advanced models play a crucial role in evaluating the effectiveness of targeted 
interventions such as vector control, public awareness campaigns, and vaccination efforts, 
thereby guiding public health responses. In this research, we are also exploring the potential 
of using the Laplace Adomian decomposition method (LADM) to solve the 
fractionalomputer virus propagation model. This method is a powerful yet straightforward 
approach to tackling epidemic models and has been successfully applied in biology, 
engineering, and applied mathematics. It combines the Laplace transform and the Adomian 
decomposition method, offering several advantages for solving complex problems. One of 
the advantages of this method is its accuracy, as by employing the Laplace transform, it 
transforms the differential equations into algebraic equations, which are often easier to solve. 
This transformation reduces the complexity of the problem and enables the use of powerful 
algebraic techniques to obtain accurate solutions. Additionally, the Adomian decomposition 
method provides a systematic and robust approach to handling nonlinear terms, allowing for 
accurate approximation of the solution even in the presence of nonlinearity. This method does 
not require any perturbation or linearization, nor does it need a defined size of the step like 
the Rung-Kutta of order 4 technique. Various models have already been solved using this 
particular technique, such as HIV infection of CD4+ T cells model [11], fractional-order 
smoking model [12], epidemic childhood diseases [13], Radhakrishnan–Kundu–Lakshmanan 
equation [14], Asian option pricing model [15], Burger’s equation [16], Chen-Lee-Liu 
equation [17], prey-predator model [18], nonlinear fractional smoking mathematical model 
[19], COVID-19 model [20], HIV model [21], Smoking epidemic model [22], fractional-
order co-infection SEIR model [23]. 

2.Model formulation 

This section presents a comprehensive mathematical model that incorporates both primary 
transmission routes of the Zika virus: vector-to-human and human-to-human. The model is 
structured according to compartmental population dynamics, dividing the total human 
population, denoted as 𝑁𝑁𝐻𝐻(𝑦𝑦), into four subgroups: susceptible humans 𝑆𝑆𝐻𝐻(𝑦𝑦), exposed 
humans 𝐸𝐸𝐻𝐻(𝑦𝑦), infected humans 𝐼𝐼𝐻𝐻(𝑦𝑦), and recovered humans 𝑅𝑅𝐻𝐻(𝑦𝑦), such that: 
𝑁𝑁𝐻𝐻(𝑦𝑦) = 𝑆𝑆𝐻𝐻(𝑦𝑦) + 𝐸𝐸𝐻𝐻(𝑦𝑦) + 𝐼𝐼𝐻𝐻(𝑦𝑦) + 𝑅𝑅𝐻𝐻(𝑦𝑦). Similarly, the mosquito (vector) population, 
represented as𝑁𝑁𝑉𝑉(𝑦𝑦), is classified into three compartments: susceptible vectors 𝑆𝑆𝑉𝑉(𝑦𝑦), 
exposed vectors𝐸𝐸𝑉𝑉(𝑦𝑦), and infected vectors𝐼𝐼𝑁𝑁(𝑦𝑦), satisfying the relation: 
𝑁𝑁𝑉𝑉(𝑦𝑦) = 𝑆𝑆𝑉𝑉(𝑦𝑦) + 𝐸𝐸𝑉𝑉(𝑦𝑦) + 𝐼𝐼𝑉𝑉(𝑦𝑦) + 𝑅𝑅𝑉𝑉(𝑦𝑦). The resulting nonlinear SEIR-based model 
captures the dynamics of Zika virus transmission between and within species, and the 
governing differential equations are formally presented in Equation (2.1). A detailed 
representation of the compartmental interactions and transmission mechanisms is outlined in 
Table 1, following the structure described in [10]. 

𝑆𝑆𝐻𝐻′(𝑡𝑡) = 𝐴𝐴𝐻𝐻 − 𝑆𝑆𝐻𝐻(𝑡𝑡)𝛽𝛽𝐻𝐻(𝐼𝐼𝑉𝑉(𝑡𝑡) + 𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡)) − 𝜇𝜇𝑆𝑆𝐻𝐻(𝑡𝑡),     

   
 

𝐸𝐸𝐻𝐻
′(𝑡𝑡) = 𝛽𝛽𝐻𝐻(𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡) + 𝐼𝐼𝑉𝑉(𝑡𝑡))𝑆𝑆𝐻𝐻(𝑡𝑡) − (𝜒𝜒𝐻𝐻 + 𝜇𝜇𝐻𝐻)𝐸𝐸𝐻𝐻(𝑡𝑡), 

𝐼𝐼𝐻𝐻
′(𝑡𝑡) = 𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻(𝑡𝑡) − (𝜂𝜂 + 𝜇𝜇𝐻𝐻 + 𝛾𝛾)𝐼𝐼𝐻𝐻(𝑡𝑡),      

𝑅𝑅𝐻𝐻
′(𝑡𝑡) = −𝜇𝜇𝐻𝐻𝑅𝑅𝐻𝐻(𝑡𝑡) + 𝛾𝛾Ι𝐻𝐻(𝑡𝑡), 

𝑆𝑆𝑉𝑉
′(𝑡𝑡) = 𝐴𝐴𝑉𝑉 − 𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − 𝜇𝜇𝐻𝐻𝑆𝑆𝑉𝑉(𝑡𝑡),       

𝐸𝐸𝑉𝑉
′(𝑡𝑡) = 𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − (𝜇𝜇𝑉𝑉 + 𝛿𝛿𝐻𝐻)𝐸𝐸𝑉𝑉(𝑡𝑡),      

𝐼𝐼𝑉𝑉
′(𝑡𝑡) = 𝐸𝐸𝑉𝑉(𝑡𝑡)𝛿𝛿𝑉𝑉 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉(𝑡𝑡).                (2.1) 

By applying the fractional derivative operator 𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐  of order 𝛼𝛼,  0 < 𝛼𝛼 ≤ 1 in the system (2.1), 

we have 

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑆𝑆𝐻𝐻(𝑡𝑡) = 𝐴𝐴𝐻𝐻 − 𝑆𝑆𝐻𝐻(𝑡𝑡)𝛽𝛽𝐻𝐻(𝐼𝐼𝑉𝑉(𝑡𝑡) + 𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡)) − 𝜇𝜇𝑆𝑆𝐻𝐻(𝑡𝑡),     

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝐸𝐸𝐻𝐻(𝑡𝑡) = 𝛽𝛽𝐻𝐻(𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡) + 𝐼𝐼𝑉𝑉(𝑡𝑡))𝑆𝑆𝐻𝐻(𝑡𝑡) − (𝜒𝜒𝐻𝐻 + 𝜇𝜇𝐻𝐻)𝐸𝐸𝐻𝐻(𝑡𝑡), 

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝐼𝐼𝐻𝐻(𝑡𝑡) = 𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻(𝑡𝑡) − (𝜂𝜂 + 𝜇𝜇𝐻𝐻 + 𝛾𝛾)𝐼𝐼𝐻𝐻(𝑡𝑡),      

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑅𝑅𝐻𝐻(𝑡𝑡) = −𝜇𝜇𝐻𝐻𝑅𝑅𝐻𝐻(𝑡𝑡) + 𝛾𝛾Ι𝐻𝐻(𝑡𝑡), 

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝑆𝑆𝑉𝑉(𝑡𝑡) = 𝐴𝐴𝑉𝑉 − 𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − 𝜇𝜇𝐻𝐻𝑆𝑆𝑉𝑉(𝑡𝑡),       

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝐸𝐸𝑉𝑉(𝑡𝑡) = 𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − (𝜇𝜇𝑉𝑉 + 𝛿𝛿𝐻𝐻)𝐸𝐸𝑉𝑉(𝑡𝑡),      

𝐷𝐷𝑡𝑡
𝛼𝛼

0
𝑐𝑐 𝐼𝐼𝑉𝑉(𝑡𝑡) = 𝐸𝐸𝑉𝑉(𝑡𝑡)𝛿𝛿𝑉𝑉 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉(𝑡𝑡).                (2.2) 

İntial condition 

(𝑆𝑆𝐻𝐻)0 = 𝑘𝑘1, ,  (𝐸𝐸𝐻𝐻)0 = 𝑘𝑘2,  (𝐼𝐼𝐻𝐻)0 = 𝑘𝑘3,  (𝑅𝑅𝐻𝐻)𝑜𝑜 = 𝑘𝑘4,  (𝑆𝑆𝑉𝑉)0 = 𝑘𝑘5,  (𝐸𝐸𝑉𝑉)0 = 𝑘𝑘6,  (𝐼𝐼𝑉𝑉)0 = 𝑘𝑘7.            

(2.3) 

 

Tablo1: Parameter descriptions of the SEIR nonlinear system based on the Zika virus 

Parameters                           Details 

𝑆𝑆𝐻𝐻(𝑡𝑡)                                                   Susceptible humans 

𝑆𝑆𝑉𝑉(𝑡𝑡)                                                   Susceptible vector 

𝐸𝐸𝐻𝐻(𝑡𝑡)                                                   Exposed humans  

𝐸𝐸𝑉𝑉(𝑡𝑡)                                              Exposed vector 

𝐼𝐼𝐻𝐻(𝑡𝑡)                                               Infected humans 

𝐼𝐼𝑉𝑉(𝑡𝑡)                                                Infected vector 

𝑅𝑅𝐻𝐻(𝑡𝑡)                                               Recovered humans 
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𝐴𝐴𝐻𝐻                                                    Susceptible: Humans recruiting 

𝜌𝜌                                                       Susceptible: Humans to infection 

𝐵𝐵𝐻𝐻                                                    Susceptible humans to infected mosquitoes  

𝜇𝜇𝐻𝐻                                                    Humans: Mortality rate       

𝜒𝜒𝐻𝐻                                                    Infected human ratio to susceptible mosquitoes                              

𝜂𝜂                                                      Treatment                    

𝛾𝛾                                                      Natural rate     

𝐵𝐵𝑉𝑉                                  Transmission ratio of the Infected humans to susceptible vector 

𝛿𝛿𝐻𝐻                                           Morality rate persuaded in people                      

𝜇𝜇𝑉𝑉                                           Natural rate of morality using the vector compartment 

𝛿𝛿𝑉𝑉                                           Susceptible mosquitos’ recruitment 

𝑘𝑘𝑖𝑖, 𝑖𝑖 = 1,  2,   …  ,  7       Initial conditions 

𝑡𝑡                                              Time 

 

3.Basic Definitions 

In this section, we will introduce some basic definitions and properties of the theory of 
fractional calculus that will be later.  

Definition 3.1  A real function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space 𝐶𝐶𝜇𝜇, 𝜇𝜇𝜇𝜇𝜇𝜇 if there exists 
a real number 𝑃𝑃 > 𝜇𝜇 such that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑝𝑝𝑓𝑓1(𝑥𝑥) where 𝑓𝑓1(𝑥𝑥)𝜖𝜖𝜖𝜖[0, ∞). Clearly 𝐶𝐶𝜇𝜇 < 𝐶𝐶𝛽𝛽 if  
𝜇𝜇 < 𝛽𝛽.  

Definition 3.2  A function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space𝐶𝐶𝜇𝜇
𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚⋃{0} if 𝑓𝑓(𝑚𝑚) ∈ 𝐶𝐶𝜇𝜇.  

Definition 3.3 [26] The Riemann-Liouville fractional integral operator of the order 𝛼𝛼 > 0 of 
a function, 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1 is defined as 

(𝐽𝐽𝑎𝑎
𝛼𝛼𝑓𝑓)(𝑥𝑥) = 1

𝛤𝛤(𝛼𝛼) ∫𝑥𝑥
𝑎𝑎 (𝑥𝑥 − 𝜏𝜏)𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑, 𝑥𝑥  > 𝑎𝑎,                          (3.1)

                                                          

(𝐽𝐽𝑎𝑎
0𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥).                                  (3.2)                                                                                                                             

All the properties of the operator 𝐽𝐽𝛼𝛼 can be found in [19] which we mention only the 
following, for 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1, 𝛼𝛼, 𝛽𝛽 ≥ 0, rand 𝛾𝛾 > −1 we have  

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎
𝛼𝛼+𝛽𝛽𝑓𝑓)(𝑥𝑥),                                                                                                  (3.3) 
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𝐴𝐴𝐻𝐻                                                    Susceptible: Humans recruiting 

𝜌𝜌                                                       Susceptible: Humans to infection 

𝐵𝐵𝐻𝐻                                                    Susceptible humans to infected mosquitoes  

𝜇𝜇𝐻𝐻                                                    Humans: Mortality rate       

𝜒𝜒𝐻𝐻                                                    Infected human ratio to susceptible mosquitoes                              

𝜂𝜂                                                      Treatment                    

𝛾𝛾                                                      Natural rate     

𝐵𝐵𝑉𝑉                                  Transmission ratio of the Infected humans to susceptible vector 

𝛿𝛿𝐻𝐻                                           Morality rate persuaded in people                      

𝜇𝜇𝑉𝑉                                           Natural rate of morality using the vector compartment 

𝛿𝛿𝑉𝑉                                           Susceptible mosquitos’ recruitment 

𝑘𝑘𝑖𝑖, 𝑖𝑖 = 1,  2,   …  ,  7       Initial conditions 

𝑡𝑡                                              Time 

 

3.Basic Definitions 

In this section, we will introduce some basic definitions and properties of the theory of 
fractional calculus that will be later.  

Definition 3.1  A real function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space 𝐶𝐶𝜇𝜇, 𝜇𝜇𝜇𝜇𝜇𝜇 if there exists 
a real number 𝑃𝑃 > 𝜇𝜇 such that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑝𝑝𝑓𝑓1(𝑥𝑥) where 𝑓𝑓1(𝑥𝑥)𝜖𝜖𝜖𝜖[0, ∞). Clearly 𝐶𝐶𝜇𝜇 < 𝐶𝐶𝛽𝛽 if  
𝜇𝜇 < 𝛽𝛽.  

Definition 3.2  A function 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > 0 is said to be in the space𝐶𝐶𝜇𝜇
𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚⋃{0} if 𝑓𝑓(𝑚𝑚) ∈ 𝐶𝐶𝜇𝜇.  

Definition 3.3 [26] The Riemann-Liouville fractional integral operator of the order 𝛼𝛼 > 0 of 
a function, 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1 is defined as 

(𝐽𝐽𝑎𝑎
𝛼𝛼𝑓𝑓)(𝑥𝑥) = 1

𝛤𝛤(𝛼𝛼) ∫𝑥𝑥
𝑎𝑎 (𝑥𝑥 − 𝜏𝜏)𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑, 𝑥𝑥  > 𝑎𝑎,                          (3.1)

                                                          

(𝐽𝐽𝑎𝑎
0𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥).                                  (3.2)                                                                                                                             

All the properties of the operator 𝐽𝐽𝛼𝛼 can be found in [19] which we mention only the 
following, for 𝑓𝑓 ∈ 𝐶𝐶𝜇𝜇, 𝜇𝜇 ≥ −1, 𝛼𝛼, 𝛽𝛽 ≥ 0, rand 𝛾𝛾 > −1 we have  

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎
𝛼𝛼+𝛽𝛽𝑓𝑓)(𝑥𝑥),                                                                                                  (3.3) 

                                                                          

   
 

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛽𝛽𝑓𝑓)(𝑥𝑥) = (𝐽𝐽𝑎𝑎
𝛽𝛽𝐽𝐽𝑎𝑎

𝛼𝛼𝑓𝑓)(𝑥𝑥)                                                                                                    (3.4) 

𝐽𝐽𝑎𝑎
𝛼𝛼𝑥𝑥𝛾𝛾 = 𝛤𝛤(𝛾𝛾+1)

𝛤𝛤(𝛼𝛼+𝛾𝛾+1) 𝑥𝑥𝛼𝛼+𝛾𝛾.                                                                                                          (3.5) 

The basic definition of the Riemann–Louville fractional derivative possesses some 
advantages over other definitions when used to simulate real-world phenomena in the form of 
a fractional-type differential equation.  

Definition 3.4 [25] The fractional derivative of the function 𝑓𝑓(𝑥𝑥) in Caputo’s sense is 
defined as 

(𝐷𝐷𝛼𝛼
𝑎𝑎𝑓𝑓) (𝑥𝑥) = (𝐽𝐽𝑚𝑚 − 𝛼𝛼

𝑎𝑎 𝐷𝐷𝑚𝑚𝑓𝑓) (𝑥𝑥) = 1
𝛤𝛤(𝑚𝑚−𝑎𝑎) ∫ (𝑥𝑥 − 𝑡𝑡)𝑚𝑚−𝛼𝛼−1𝑓𝑓(𝑚𝑚)(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥

𝑎𝑎 ,   for 𝑚𝑚 − 1 < 𝛼𝛼 <
𝑚𝑚, 𝑚𝑚 ∈ 𝑁𝑁, 𝑥𝑥 > 0.                         

(3.6)  

Lemma 3.1 If−1 < 𝛼𝛼 < 𝑚𝑚 , 𝑚𝑚 ∈ N and 𝜇𝜇 ≥ −1, then 

(𝐽𝐽𝑎𝑎
𝛼𝛼𝐷𝐷𝑎𝑎

𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − ∑𝑚𝑚−1
𝑘𝑘=0 𝑓𝑓𝑘𝑘(𝑎𝑎) ((𝑥𝑥−𝑎𝑎)𝑘𝑘

𝑘𝑘! ) , 𝑎𝑎 ≥ 0                                                          (3.7) 

(𝐷𝐷𝑎𝑎
𝛼𝛼𝐽𝐽𝑎𝑎

𝛼𝛼𝑓𝑓)(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                                                                                             (3.8) 

 

4.Laplace Adomian Decomposition Method 

In this section, we will illustrate the basic steps for LADM. We discuss the following important 

definitions or our research study: 

Definition 4.1 [24] A function 𝑓𝑓 on 0 ≤ 𝑡𝑡 < ∞ is exponentially bounded of order 𝜎𝜎 ∈ 𝑅𝑅 if 

satisfies ∥ 𝑓𝑓(𝑡𝑡) ∥≤ 𝑀𝑀𝑒𝑒𝜎𝜎𝜎𝜎, for some real constant 𝑀𝑀 > 0. 

Definition 3.2  The Caputo fractional derivative is defined as follows: 

𝐿𝐿{𝐷𝐷𝜎𝜎𝑓𝑓(𝑡𝑡)} = 𝑠𝑠𝜎𝜎𝐿𝐿{𝑓𝑓(𝑡𝑡)} − ∑
𝑚𝑚

𝑘𝑘=0
𝑠𝑠𝜎𝜎−𝑘𝑘−1𝑓𝑓(𝑘𝑘)(0), 

(4.a) 

where 𝑚𝑚 = 𝜎𝜎 + 1, and [𝛼𝛼] represents the integer part of 𝜎𝜎.   As a result, the following useful 

formula is obtained: 

𝐿𝐿(𝑡𝑡𝜎𝜎) = 𝛤𝛤(𝜎𝜎+1)
𝑠𝑠(𝜎𝜎+1) ,    𝜎𝜎 ∈ 𝑅𝑅+.         (4.b) 

The last-mentioned definitions can be used in this section to discuss the general procedures for 

solving the proposed mathematical model (2.2).  First of all, the Laplace transform is applied 

to both lift-hand and right-hand sides of Eq. (2.2) in the following form: 
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𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑆𝑆𝐻𝐻(𝑡𝑡)) = 𝐿𝐿 (𝐴𝐴𝐻𝐻 − 𝑆𝑆𝐻𝐻(𝑡𝑡)𝛽𝛽𝐻𝐻(𝐼𝐼𝑉𝑉(𝑡𝑡) + 𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡)) − 𝜇𝜇𝐻𝐻𝑆𝑆𝐻𝐻(𝑡𝑡)) ,      

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐸𝐸𝐻𝐻(𝑡𝑡)) = 𝐿𝐿(𝛽𝛽𝐻𝐻(𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡) + 𝐼𝐼𝑉𝑉(𝑡𝑡))𝑆𝑆𝐻𝐻(𝑡𝑡) − (𝜒𝜒𝐻𝐻 + 𝜇𝜇𝐻𝐻)𝐸𝐸𝐻𝐻(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐼𝐼𝐻𝐻(𝑡𝑡)) = 𝐿𝐿(𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻(𝑡𝑡) − (𝜂𝜂 + 𝜇𝜇𝐻𝐻 + 𝛾𝛾)𝐼𝐼𝐻𝐻(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑅𝑅𝐻𝐻(𝑡𝑡)) = 𝐿𝐿(−𝜇𝜇𝐻𝐻𝑅𝑅𝐻𝐻(𝑡𝑡) + 𝛾𝛾Ι𝐻𝐻(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑆𝑆𝑉𝑉(𝑡𝑡)) = 𝐿𝐿(𝐴𝐴𝑉𝑉 − 𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − 𝜇𝜇𝐻𝐻𝑆𝑆𝑉𝑉(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐸𝐸𝑉𝑉(𝑡𝑡)) = 𝐿𝐿(𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − (𝜇𝜇𝑉𝑉 + 𝛿𝛿𝐻𝐻)𝐸𝐸𝑉𝑉(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐼𝐼𝑉𝑉(𝑡𝑡)) = 𝐿𝐿(𝐸𝐸𝑉𝑉(𝑡𝑡)𝛿𝛿𝑉𝑉 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉(𝑡𝑡)),            (4.1) 

Then, by applying the formula (4.a) to Eq. (4.1), we get 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝑆𝑆𝐻𝐻(0) =
𝐴𝐴𝐻𝐻
𝑠𝑠 − 𝛽𝛽𝐻𝐻𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) − 𝛽𝛽𝐻𝐻𝜌𝜌𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝑆𝑆𝐻𝐻),      

𝑠𝑠𝛼𝛼𝐿𝐿(𝐸𝐸𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝐸𝐸𝐻𝐻(0) = 𝛽𝛽𝐻𝐻𝑃𝑃𝑃𝑃(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) + 𝛽𝛽𝐻𝐻𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) − 𝜒𝜒𝐻𝐻𝐿𝐿(𝐸𝐸𝐻𝐻) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝐸𝐸𝐻𝐻), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝐼𝐼𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝐼𝐼𝐻𝐻(0) = 𝜒𝜒𝐻𝐻𝐿𝐿(𝐸𝐸𝐻𝐻) − 𝜂𝜂𝜂𝜂(𝐼𝐼𝐻𝐻) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝐼𝐼𝐻𝐻) − 𝛾𝛾𝛾𝛾(𝐼𝐼𝐻𝐻), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑅𝑅𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝑅𝑅𝐻𝐻(0) = −𝜇𝜇𝐻𝐻𝐿𝐿(𝑅𝑅𝐻𝐻) + 𝛾𝛾𝛾𝛾(𝐼𝐼𝐻𝐻), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆𝑉𝑉) − 𝑠𝑠𝛼𝛼−1𝑆𝑆𝑉𝑉(0) =
𝐴𝐴𝑉𝑉
𝑠𝑠 − 𝛽𝛽𝑉𝑉𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝑆𝑆𝑉𝑉), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝐸𝐸𝑉𝑉) − 𝑠𝑠𝛼𝛼−1𝐸𝐸(0) = 𝛽𝛽𝑉𝑉𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) − 𝜇𝜇𝑉𝑉𝐿𝐿(𝐸𝐸𝑉𝑉) − 𝛿𝛿𝐻𝐻𝐿𝐿(𝐸𝐸𝑉𝑉), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝐼𝐼𝑉𝑉) − 𝑠𝑠𝛼𝛼−1𝐼𝐼𝑉𝑉(0) = 𝛿𝛿𝑉𝑉𝐿𝐿(𝐸𝐸𝑉𝑉) − 𝜇𝜇𝑉𝑉𝐿𝐿(𝐼𝐼𝑉𝑉),                                    
 (4.2) 

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get  

𝐿𝐿(𝑆𝑆𝐻𝐻) =
𝑘𝑘1
𝑠𝑠 + 𝐴𝐴𝐻𝐻

𝑠𝑠𝛼𝛼+1 −
𝛽𝛽𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) −

𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝐻𝐻), 

𝐿𝐿(𝐸𝐸𝐻𝐻) =
𝑘𝑘2
𝑠𝑠 + 𝛽𝛽𝐻𝐻𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) +
𝛽𝛽𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) −

𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻), 

𝐿𝐿(𝐼𝐼𝐻𝐻) =
𝑘𝑘3
𝑠𝑠 + 𝜒𝜒𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻) −
𝜂𝜂
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻) −

𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻), 

𝐿𝐿(𝑅𝑅𝐻𝐻) =
𝑘𝑘4
𝑠𝑠 + 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝐻𝐻) +
𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻), 

𝐿𝐿(𝑆𝑆𝑉𝑉) =
𝑘𝑘5
𝑠𝑠 + 𝐴𝐴𝑉𝑉

𝑠𝑠𝛼𝛼+1 −
𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑉𝑉), 

𝐿𝐿(𝐸𝐸𝑉𝑉) =
𝑘𝑘6
𝑠𝑠 + 𝛽𝛽𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) −
𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉) −

𝑆𝑆𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉), 
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𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑆𝑆𝐻𝐻(𝑡𝑡)) = 𝐿𝐿 (𝐴𝐴𝐻𝐻 − 𝑆𝑆𝐻𝐻(𝑡𝑡)𝛽𝛽𝐻𝐻(𝐼𝐼𝑉𝑉(𝑡𝑡) + 𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡)) − 𝜇𝜇𝐻𝐻𝑆𝑆𝐻𝐻(𝑡𝑡)) ,      

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐸𝐸𝐻𝐻(𝑡𝑡)) = 𝐿𝐿(𝛽𝛽𝐻𝐻(𝜌𝜌𝐼𝐼𝐻𝐻(𝑡𝑡) + 𝐼𝐼𝑉𝑉(𝑡𝑡))𝑆𝑆𝐻𝐻(𝑡𝑡) − (𝜒𝜒𝐻𝐻 + 𝜇𝜇𝐻𝐻)𝐸𝐸𝐻𝐻(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐼𝐼𝐻𝐻(𝑡𝑡)) = 𝐿𝐿(𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻(𝑡𝑡) − (𝜂𝜂 + 𝜇𝜇𝐻𝐻 + 𝛾𝛾)𝐼𝐼𝐻𝐻(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑅𝑅𝐻𝐻(𝑡𝑡)) = 𝐿𝐿(−𝜇𝜇𝐻𝐻𝑅𝑅𝐻𝐻(𝑡𝑡) + 𝛾𝛾Ι𝐻𝐻(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝑆𝑆𝑉𝑉(𝑡𝑡)) = 𝐿𝐿(𝐴𝐴𝑉𝑉 − 𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − 𝜇𝜇𝐻𝐻𝑆𝑆𝑉𝑉(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐸𝐸𝑉𝑉(𝑡𝑡)) = 𝐿𝐿(𝛽𝛽𝑉𝑉𝐼𝐼𝐻𝐻(𝑡𝑡)𝑆𝑆𝑉𝑉(𝑡𝑡) − (𝜇𝜇𝑉𝑉 + 𝛿𝛿𝐻𝐻)𝐸𝐸𝑉𝑉(𝑡𝑡)), 

𝐿𝐿( 𝐷𝐷𝑡𝑡𝛼𝛼0
𝑐𝑐 𝐼𝐼𝑉𝑉(𝑡𝑡)) = 𝐿𝐿(𝐸𝐸𝑉𝑉(𝑡𝑡)𝛿𝛿𝑉𝑉 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉(𝑡𝑡)),            (4.1) 

Then, by applying the formula (4.a) to Eq. (4.1), we get 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝑆𝑆𝐻𝐻(0) =
𝐴𝐴𝐻𝐻
𝑠𝑠 − 𝛽𝛽𝐻𝐻𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) − 𝛽𝛽𝐻𝐻𝜌𝜌𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝑆𝑆𝐻𝐻),      

𝑠𝑠𝛼𝛼𝐿𝐿(𝐸𝐸𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝐸𝐸𝐻𝐻(0) = 𝛽𝛽𝐻𝐻𝑃𝑃𝑃𝑃(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) + 𝛽𝛽𝐻𝐻𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) − 𝜒𝜒𝐻𝐻𝐿𝐿(𝐸𝐸𝐻𝐻) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝐸𝐸𝐻𝐻), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝐼𝐼𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝐼𝐼𝐻𝐻(0) = 𝜒𝜒𝐻𝐻𝐿𝐿(𝐸𝐸𝐻𝐻) − 𝜂𝜂𝜂𝜂(𝐼𝐼𝐻𝐻) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝐼𝐼𝐻𝐻) − 𝛾𝛾𝛾𝛾(𝐼𝐼𝐻𝐻), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑅𝑅𝐻𝐻) − 𝑠𝑠𝛼𝛼−1𝑅𝑅𝐻𝐻(0) = −𝜇𝜇𝐻𝐻𝐿𝐿(𝑅𝑅𝐻𝐻) + 𝛾𝛾𝛾𝛾(𝐼𝐼𝐻𝐻), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝑆𝑆𝑉𝑉) − 𝑠𝑠𝛼𝛼−1𝑆𝑆𝑉𝑉(0) =
𝐴𝐴𝑉𝑉
𝑠𝑠 − 𝛽𝛽𝑉𝑉𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) − 𝜇𝜇𝐻𝐻𝐿𝐿(𝑆𝑆𝑉𝑉), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝐸𝐸𝑉𝑉) − 𝑠𝑠𝛼𝛼−1𝐸𝐸(0) = 𝛽𝛽𝑉𝑉𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) − 𝜇𝜇𝑉𝑉𝐿𝐿(𝐸𝐸𝑉𝑉) − 𝛿𝛿𝐻𝐻𝐿𝐿(𝐸𝐸𝑉𝑉), 

𝑠𝑠𝛼𝛼𝐿𝐿(𝐼𝐼𝑉𝑉) − 𝑠𝑠𝛼𝛼−1𝐼𝐼𝑉𝑉(0) = 𝛿𝛿𝑉𝑉𝐿𝐿(𝐸𝐸𝑉𝑉) − 𝜇𝜇𝑉𝑉𝐿𝐿(𝐼𝐼𝑉𝑉),                                    
 (4.2) 

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get  

𝐿𝐿(𝑆𝑆𝐻𝐻) =
𝑘𝑘1
𝑠𝑠 + 𝐴𝐴𝐻𝐻

𝑠𝑠𝛼𝛼+1 −
𝛽𝛽𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) −

𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝐻𝐻), 

𝐿𝐿(𝐸𝐸𝐻𝐻) =
𝑘𝑘2
𝑠𝑠 + 𝛽𝛽𝐻𝐻𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻) +
𝛽𝛽𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻) −

𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻), 

𝐿𝐿(𝐼𝐼𝐻𝐻) =
𝑘𝑘3
𝑠𝑠 + 𝜒𝜒𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻) −
𝜂𝜂
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻) −

𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻), 

𝐿𝐿(𝑅𝑅𝐻𝐻) =
𝑘𝑘4
𝑠𝑠 + 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝐻𝐻) +
𝛾𝛾
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻), 

𝐿𝐿(𝑆𝑆𝑉𝑉) =
𝑘𝑘5
𝑠𝑠 + 𝐴𝐴𝑉𝑉

𝑠𝑠𝛼𝛼+1 −
𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) −

𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑉𝑉), 

𝐿𝐿(𝐸𝐸𝑉𝑉) =
𝑘𝑘6
𝑠𝑠 + 𝛽𝛽𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉) −
𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉) −

𝑆𝑆𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉), 

   
 

𝐿𝐿(𝐼𝐼𝑉𝑉) = 𝑘𝑘7
𝑠𝑠 + 𝛿𝛿𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉) − 𝜇𝜇𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉),                                                  

(4.3) 

 

The proposed method gives the solution as an infinite series. Let the value of 𝐴𝐴 =
𝐼𝐼𝐻𝐻𝑆𝑆𝐻𝐻, 𝐵𝐵 = 𝐼𝐼𝑉𝑉𝑆𝑆𝐻𝐻 and 𝐶𝐶 = 𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉 to be able to apply the Adomian decomposition method. We 
consider the solution as an infinite series in the form 

𝑆𝑆𝐻𝐻(𝑡𝑡) = ∑ 𝑆𝑆𝐻𝐻,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
, 𝐸𝐸𝐻𝐻(𝑡𝑡) = ∑ 𝐸𝐸𝐻𝐻,𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
,   𝐼𝐼𝐻𝐻(𝑡𝑡) = ∑ 𝐼𝐼𝐻𝐻,𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
. 

𝑅𝑅𝐻𝐻(𝑡𝑡) = ∑ 𝑅𝑅𝐻𝐻,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
,   𝑆𝑆𝑉𝑉(𝑡𝑡) = ∑ 𝑆𝑆𝑉𝑉,𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
, 𝐸𝐸𝑉𝑉(𝑡𝑡) = ∑ 𝐸𝐸𝑉𝑉,𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
,   𝐼𝐼𝑉𝑉(𝑡𝑡) = ∑ 𝐼𝐼𝑉𝑉,𝑛𝑛(𝑡𝑡)

∞

𝑛𝑛=0
. 

(4.4) 

Then, by decomposing the nonlinear part named 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 in the following form  

  𝐴𝐴 = ∑ 𝐴𝐴𝑛𝑛

∞

𝑛𝑛=0
,     𝐵𝐵 = ∑ 𝐵𝐵𝑛𝑛

∞

𝑛𝑛=0
,     𝐶𝐶 = ∑ 𝐶𝐶𝑛𝑛

∞

𝑛𝑛=0
 

    

                      (4.5) 

Here, 𝐴𝐴𝑛𝑛, 𝐵𝐵𝑛𝑛, 𝐶𝐶𝑛𝑛 can be computed using the convolution operation as 

𝐴𝐴𝑛𝑛 = 1
𝛤𝛤(𝑛𝑛 + 1)

𝑑𝑑𝑛𝑛

𝑑𝑑𝜀𝜀𝑛𝑛 [∑ 𝜀𝜀𝑖𝑖𝐼𝐼𝐻𝐻,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
∑ 𝜀𝜀𝑖𝑖𝑆𝑆𝐻𝐻,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
]

𝜀𝜀=0

, 

𝐵𝐵𝑛𝑛 = 1
𝛤𝛤(𝑛𝑛 + 1)

𝑑𝑑𝑛𝑛

𝑑𝑑𝜀𝜀𝑛𝑛 [∑ 𝜀𝜀𝑖𝑖𝐼𝐼𝑉𝑉,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
∑ 𝜀𝜀𝑖𝑖𝑆𝑆𝐻𝐻,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
]

𝜀𝜀=0

, 

𝐶𝐶𝑛𝑛 = 1
𝛤𝛤(𝑛𝑛 + 1)

𝑑𝑑𝑛𝑛

𝑑𝑑𝜀𝜀𝑛𝑛 [∑ 𝜀𝜀𝑖𝑖𝐼𝐼𝐻𝐻,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
∑ 𝜀𝜀𝑖𝑖𝑆𝑆𝑉𝑉,𝑖𝑖

𝑛𝑛

𝑖𝑖=0
]

𝜀𝜀=0

, 

                      (4.6) 

 

By substituting Eq. (4.4- 4.6) into Eq. (4.3) and by matching the two sides of the equation 

yields the following iterative algorithm we have resulted in the form.  

 

 

𝑆𝑆𝐻𝐻,0 = 𝑘𝑘1
𝑠𝑠 , 𝐸𝐸𝐻𝐻,0 = 𝑘𝑘2

𝑠𝑠 , 𝐼𝐼𝐻𝐻,0 = 𝑘𝑘3
𝑠𝑠 , 𝑅𝑅𝐻𝐻,0 = 𝑘𝑘4

𝑠𝑠 , 𝑆𝑆𝑉𝑉,0 = 𝑘𝑘5
𝑠𝑠 , 
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 𝐸𝐸𝑉𝑉,0 = 𝑘𝑘6
𝑠𝑠 ,   𝐼𝐼𝑉𝑉,0 = 𝑘𝑘7

𝑠𝑠 .           

  

𝐿𝐿(𝑆𝑆𝐻𝐻,1) = 𝐴𝐴𝐻𝐻
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(B0) − 𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝐻𝐻,0), 

𝐿𝐿(𝐸𝐸𝐻𝐻,1) = 𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) + 𝛽𝛽𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐵𝐵0) − 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,0) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,0), 

𝐿𝐿(𝐼𝐼𝐻𝐻,1) = 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,0) − 𝜂𝜂

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0), 

𝐿𝐿(𝑅𝑅𝐻𝐻,1) = 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝐻𝐻,0) + 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0), 

𝐿𝐿(𝑆𝑆𝑉𝑉,1) = 𝐴𝐴𝑉𝑉
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑉𝑉,0), 

𝐿𝐿(𝐸𝐸𝑉𝑉,1) = 𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,0) − 𝑆𝑆𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,0), 

𝐿𝐿(𝐼𝐼𝑉𝑉,1) = 𝛿𝛿𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,0) − 𝜇𝜇𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉,0), …, 

𝐿𝐿(𝑆𝑆𝐻𝐻,𝑛𝑛) = − 𝛽𝛽𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(B𝑛𝑛−1) − 𝛽𝛽𝐻𝐻𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛) = 𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) + 𝛽𝛽𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐵𝐵𝑛𝑛−1) − 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛−1) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛) = 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛−1) − 𝜂𝜂

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝑅𝑅𝐻𝐻,𝑛𝑛) = 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝐻𝐻,𝑛𝑛−1) + 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝑆𝑆𝑉𝑉,𝑛𝑛) = − 𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑉𝑉,𝑛𝑛−1), 

𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛) = 𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛−1) − 𝑆𝑆𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛−1), 

𝐿𝐿(𝐼𝐼𝑉𝑉,𝑛𝑛) = 𝛿𝛿𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛−1) − 𝜇𝜇𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉,𝑛𝑛−1), 

                            (4.7) 

Finally, by taking the inverse transform of Eq. (4.7), we have the following equation  

𝑆𝑆𝐻𝐻,0 = 𝑘𝑘1, 𝐸𝐸𝐻𝐻,0 = 𝑘𝑘2, 𝐼𝐼𝐻𝐻,0 = 𝑘𝑘3, 𝑅𝑅𝐻𝐻,0 = 𝑘𝑘4, 𝑆𝑆𝑉𝑉,0 = 𝑘𝑘5, 

 𝐸𝐸𝑉𝑉,0 = 𝑘𝑘6,   𝐼𝐼𝑉𝑉,0 = 𝑘𝑘7 . 

𝑆𝑆𝐻𝐻,1 = [𝐴𝐴𝐻𝐻 − 𝛽𝛽𝐻𝐻B0 − 𝛽𝛽𝐻𝐻𝜌𝜌𝐴𝐴0 − 𝜇𝜇𝐻𝐻𝑆𝑆𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 
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 𝐸𝐸𝑉𝑉,0 = 𝑘𝑘6
𝑠𝑠 ,   𝐼𝐼𝑉𝑉,0 = 𝑘𝑘7

𝑠𝑠 .           

  

𝐿𝐿(𝑆𝑆𝐻𝐻,1) = 𝐴𝐴𝐻𝐻
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(B0) − 𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝐻𝐻,0), 

𝐿𝐿(𝐸𝐸𝐻𝐻,1) = 𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴0) + 𝛽𝛽𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐵𝐵0) − 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,0) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,0), 

𝐿𝐿(𝐼𝐼𝐻𝐻,1) = 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,0) − 𝜂𝜂

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0), 

𝐿𝐿(𝑅𝑅𝐻𝐻,1) = 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝐻𝐻,0) + 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,0), 

𝐿𝐿(𝑆𝑆𝑉𝑉,1) = 𝐴𝐴𝑉𝑉
𝑠𝑠𝛼𝛼+1 − 𝛽𝛽𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑉𝑉,0), 

𝐿𝐿(𝐸𝐸𝑉𝑉,1) = 𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶0) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,0) − 𝑆𝑆𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,0), 

𝐿𝐿(𝐼𝐼𝑉𝑉,1) = 𝛿𝛿𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,0) − 𝜇𝜇𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉,0), …, 

𝐿𝐿(𝑆𝑆𝐻𝐻,𝑛𝑛) = − 𝛽𝛽𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(B𝑛𝑛−1) − 𝛽𝛽𝐻𝐻𝜌𝜌

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛) = 𝛽𝛽𝐻𝐻𝜌𝜌
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐴𝐴𝑛𝑛−1) + 𝛽𝛽𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐵𝐵𝑛𝑛−1) − 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛−1) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛) = 𝜒𝜒𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝐻𝐻,𝑛𝑛−1) − 𝜂𝜂

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1) − 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1) − 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝑅𝑅𝐻𝐻,𝑛𝑛) = 𝜇𝜇𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝑅𝑅𝐻𝐻,𝑛𝑛−1) + 𝛾𝛾

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝐻𝐻,𝑛𝑛−1), 

𝐿𝐿(𝑆𝑆𝑉𝑉,𝑛𝑛) = − 𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝑆𝑆𝑉𝑉,𝑛𝑛−1), 

𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛) = 𝛽𝛽𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐶𝐶𝑛𝑛−1) − 𝜇𝜇𝐻𝐻

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛−1) − 𝑆𝑆𝐻𝐻
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛−1), 

𝐿𝐿(𝐼𝐼𝑉𝑉,𝑛𝑛) = 𝛿𝛿𝑉𝑉
𝑠𝑠𝛼𝛼 𝐿𝐿(𝐸𝐸𝑉𝑉,𝑛𝑛−1) − 𝜇𝜇𝑉𝑉

𝑠𝑠𝛼𝛼 𝐿𝐿(𝐼𝐼𝑉𝑉,𝑛𝑛−1), 

                            (4.7) 

Finally, by taking the inverse transform of Eq. (4.7), we have the following equation  

𝑆𝑆𝐻𝐻,0 = 𝑘𝑘1, 𝐸𝐸𝐻𝐻,0 = 𝑘𝑘2, 𝐼𝐼𝐻𝐻,0 = 𝑘𝑘3, 𝑅𝑅𝐻𝐻,0 = 𝑘𝑘4, 𝑆𝑆𝑉𝑉,0 = 𝑘𝑘5, 

 𝐸𝐸𝑉𝑉,0 = 𝑘𝑘6,   𝐼𝐼𝑉𝑉,0 = 𝑘𝑘7 . 

𝑆𝑆𝐻𝐻,1 = [𝐴𝐴𝐻𝐻 − 𝛽𝛽𝐻𝐻B0 − 𝛽𝛽𝐻𝐻𝜌𝜌𝐴𝐴0 − 𝜇𝜇𝐻𝐻𝑆𝑆𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

   
 

𝐸𝐸𝐻𝐻,1 = [𝛽𝛽𝐻𝐻𝜌𝜌𝐴𝐴0 + 𝛽𝛽𝐻𝐻B0 − 𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻,0 − 𝜇𝜇𝐻𝐻𝐸𝐸𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝐼𝐼𝐻𝐻,1 = [𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻,0 − 𝜂𝜂𝐼𝐼𝐻𝐻,0 − 𝜇𝜇𝐻𝐻𝐼𝐼𝐻𝐻,0 − 𝛾𝛾𝐼𝐼𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑅𝑅𝐻𝐻,1 = [𝜇𝜇𝐻𝐻𝑅𝑅𝐻𝐻,0 + 𝛾𝛾𝐼𝐼𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝑆𝑆𝑉𝑉,1 = [𝐴𝐴𝑉𝑉 − 𝛽𝛽𝑉𝑉𝐶𝐶0 − 𝜇𝜇𝐻𝐻𝑆𝑆𝑉𝑉,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝐸𝐸𝑉𝑉,1 = [𝛽𝛽𝑉𝑉𝐶𝐶0 − 𝜇𝜇𝐻𝐻𝐸𝐸𝑉𝑉,0 − 𝑆𝑆𝐻𝐻𝐸𝐸𝑉𝑉,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

𝐿𝐿(𝐼𝐼𝑉𝑉,1) = [𝛿𝛿𝑉𝑉𝐸𝐸𝑉𝑉,0 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1), 

                       (4.8) 

Similarly, at the final step, we get the rest of the terms as infinite series as, 

 

𝑆𝑆𝐻𝐻(𝑡𝑡) = ∑ 𝑆𝑆𝐻𝐻,𝑛𝑛(𝑡𝑡) = 𝑘𝑘1 + [−𝛽𝛽𝐻𝐻B0 − 𝛽𝛽𝐻𝐻𝜌𝜌𝐴𝐴0 − 𝜇𝜇𝐻𝐻𝑆𝑆𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯
∞

𝑛𝑛=0
, 

  𝐸𝐸𝐻𝐻(𝑡𝑡) = ∑ 𝐸𝐸𝐻𝐻,𝑛𝑛(𝑡𝑡) = 𝑘𝑘2 +
∞

𝑛𝑛=0
[𝛽𝛽𝐻𝐻𝜌𝜌𝐴𝐴0 + 𝛽𝛽𝐻𝐻B0 − 𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻,0 − 𝜇𝜇𝐻𝐻𝐸𝐸𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯, 

 𝐼𝐼𝐻𝐻(𝑡𝑡) = ∑ 𝐼𝐼𝐻𝐻,𝑛𝑛(𝑡𝑡) =
∞

𝑛𝑛=0
𝑘𝑘3 + [𝜒𝜒𝐻𝐻𝐸𝐸𝐻𝐻,0 − 𝜂𝜂𝐼𝐼𝐻𝐻,0 − 𝜇𝜇𝐻𝐻𝐼𝐼𝐻𝐻,0 − 𝛾𝛾𝐼𝐼𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯, 

𝑅𝑅𝐻𝐻(𝑡𝑡) = ∑ 𝑅𝑅𝐻𝐻,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝑘𝑘4 + [𝜇𝜇𝐻𝐻𝑅𝑅𝐻𝐻,0 + 𝛾𝛾𝐼𝐼𝐻𝐻,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯, 

  𝑆𝑆𝑉𝑉(𝑡𝑡) = ∑ 𝑆𝑆𝑉𝑉,𝑛𝑛(𝑡𝑡)
∞

𝑛𝑛=0
= 𝑘𝑘5 + [−𝛽𝛽𝑉𝑉𝐶𝐶0 − 𝜇𝜇𝐻𝐻𝑆𝑆𝑉𝑉,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯, 

  𝐸𝐸𝑉𝑉(𝑡𝑡) = ∑ 𝐸𝐸𝑉𝑉,𝑛𝑛(𝑡𝑡) = 𝑘𝑘6 + [𝛽𝛽𝑉𝑉𝐶𝐶0 − 𝜇𝜇𝐻𝐻𝐸𝐸𝑉𝑉,0 − 𝑆𝑆𝐻𝐻𝐸𝐸𝑉𝑉,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯
∞

𝑛𝑛=0
, 

  𝐼𝐼𝑉𝑉(𝑡𝑡) = ∑ 𝐼𝐼𝑉𝑉,𝑛𝑛(𝑡𝑡) = 𝑘𝑘7 +
∞

𝑛𝑛=0
[𝛿𝛿𝑉𝑉𝐸𝐸𝑉𝑉,0 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉,0] 𝑡𝑡𝛼𝛼

𝛤𝛤(𝛼𝛼 + 1) + ⋯.  

                                                (4.9) 
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Equation (4.9) solves the main SAIR model of Eq. (2.2) which will be illustrated in the next 
section. 

5.Numerical Simulations 

In this section, we test the effectiveness of the proposed technique by examining the acquired 
results for model (2.2) for different 𝛼𝛼. The numerical simulations are presented by taking 
partial parameters from numerical simulations in [10]. In this section, the values of various 
parameters are presented for two different cases. 

The results obtained by LADM match the exact solutions when 𝛼𝛼 =  1. Figure 1-13 presents 
a comparison between the results obtained using LADM and those generated by MATLAB's 
ODE45 (a Runge-Kutta 4th order method) across various model categories.It is evident from 
this figure that the proposed technique is efcient and accurate, as it perfectly agrees with the 
MATLAB code results. 

Consider the SEIR nonlinear system based on the Zika virus with 𝛽𝛽𝐻𝐻  =  0.12,  𝐴𝐴𝐻𝐻  =
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 0.18,  𝑘𝑘6  =  0.2   and 𝑘𝑘7 = 0.22 is presented as:  
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Fig. 2 The solution of  𝑆𝑆𝐻𝐻(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) 
of 𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8  and 0 ≤ 𝑡𝑡 ≤ 20. 

 

Fig. 3 The solution of 𝐸𝐸𝐻𝐻(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  20. 
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Fig. 4 The solution of  𝐸𝐸𝐻𝐻(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) 
of 𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8  and 0 ≤ 𝑡𝑡 ≤ 20. 

 

Fig. 5 The solution of 𝐼𝐼𝐻𝐻(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  20. 
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Fig. 6 The solution of  𝐼𝐼𝐻𝐻(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) of 
𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8  and 0 ≤ 𝑡𝑡 ≤ 20. 

 

Fig. 7 The solution of 𝑅𝑅𝐻𝐻(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  20. 
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Fig. 8 The solution of  𝑅𝑅𝐻𝐻(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) 
of 𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8  and 0 ≤ 𝑡𝑡 ≤ 20. 

 

 

Fig. 9 The solution of 𝑆𝑆𝑉𝑉(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  20. 
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Fig. 10 The solution of  𝑆𝑆𝑉𝑉(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) 
of 𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8  and 0 ≤ 𝑡𝑡 ≤ 20. 

 

Fig. 13 The solution of 𝐸𝐸𝑉𝑉(𝑡𝑡) obtained by ODE 45 for 𝛼𝛼 = 1, and 0 <  𝑡𝑡 <  20. 
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Fig. 14 The solution of  𝐸𝐸𝑉𝑉(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) 
of 𝛼𝛼 = 0.9, (c) of 𝛼𝛼 = 0.8 and 0 ≤ 𝑡𝑡 ≤ 20. 
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Fig. 14 The solution of  𝐼𝐼𝑉𝑉(𝑡𝑡) obtained by LADM for different values of 𝛼𝛼, (a) of 𝛼𝛼 = 1, (b) 
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6.Conclusions 

In this study, a nonlinear SEIR model incorporating a modified Caputo fractional derivative 
was developed to analyze the transmission dynamics of the Zika virus. The model has been 
successfully solved using two different approaches: the Rung-Kutta of order 4 and Laplace 
Adomian decomposition method. The acquired results ensure accurate solutions and are 
investigated for different values of the fractional-order 𝛼𝛼 and transmission rates.All obtained 
results have been analyzed and compared for various cases. The obtained results demonstrate 
high accuracy and stability across various values of the fractional-order parameter 𝛼𝛼 and 
different transmission rates. Our results and methods in this work can be further extended or 
generalized in solving other interesting nonlinear models arising from some phenomena in 
physics and engineering. In addition, our results can also be applied for models formulated 
using other fractional derivatives. 
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Abstract
In this paper the main result is a lower estimation for the norm of a resolvent operator,
the spectrum of which is a unit circle. It is shown that for arbitrary function φ(λ)
analytic on a unit circle, there exist an operator which resolvent norm is greater than
|φ(λ)|.
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1 Introduction

A bounded linear operator B, acting in a Banach space F(X) of functions on a set X is
called a weighted displacement operator (WDO) if it can be put into the form:

(Bu)(x) = a(x)u[α(x)], x ∈ X (1.1)

where α : X → X is a certain application and a(·) is a function defined on X.
Operators of the form:

(Tαu)(x) = u(α(x)), x ∈ X (1.2)

are called composition operators or displacement operators
Such operators, the algebras of operators they generate and the functional equations

linked to them, have been studied by several authors in various function spaces as indepen-
dent objects and in connection with various applications [[1] -[4]], [[6] - [11]]. The study of
a concrete class of operators is closely linked to the study of a Banach algebra generated by
such operators. In this case, commutative algebras are simpler to construct and this sim-
plifies the study of the corresponding operators. These operators examined (with α fixed)
give rise to a non-commutative Banach algebra. But if we restrict ourselves to examining
operators whose coefficients are constant or invariant with respect to the displacement
(a(α(x)) = a(x)), then the corresponding algebra of operators is commutative.

This is why it is useful to reduce the study of the given operator to the examination
of another operator with a better, constant or invariant coefficient. Similar problems have
been examined for other forms of operator. For example, one of the problems analogous
to the one examined is the problem of reducing a partial derivative (differential) operator
to a canonical form. Another analogous approach is found in the theory of linear systems
of differential equations of the form:

U̇(t) = A(t)u(t) (1.3)

1
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1

Let D(t) be a matrix of bounded, invertible functions with the inverse D−1(t) also bounded.
The change in the system (1.3) of the unknown function Z(t) = D(t)u(t) is called the Li-
apounov transformation of the system. The linear system (1.3) is said to be reducible if
there is a Lyapounov transformation, reducing this system to a system with a constant
coefficient.

By analogy with the theory of differential equations, we will call the invertible operator
D of multiplication by a continuous function the Lyapounov transformation d(·) ∈ C(X):

DU(x) = d(x).u(x).

The weighted displacement operator (WDO) B will be said to be reducible to a con-
stant coefficient operator, if there exists a Lyapunov transformation such that:

DBD−1 = a0Tα, a0 ∈ C (1.4)

DBD−1 = a0Tα, où a0(α(x)) = a0(x) (1.5)

From the point of view of operator theory, these definitions mean that the operator B =
aTα is similar to the constant or invariant coefficient operator a0Tα. As already noted,
the Banach algebra generated by such weighted shift operators is commutative, but in the
case of examining these operators in the space L2(X, µ), it is a C∗-algebra. This makes it
possible, for example, to apply the spectral theorem to reducible weighted shift operators.

In this work, we examine the reducibility of weighted shift operators with continuous
coefficients, generated by periodic, continuous applications of a compact, separable topo-
logical space X. Such operators operate in classical Banach spaces of functions on X, such
as the spaces Lp(X, µ) and C(X). For any α applications, the spectrum of the weighted
displacement operator depends on the space of functions considered, but in the case of a
α periodic application, the spectrum of the weighted displacement operator is the same
in the classical spaces indicated. The results obtained in the article also remain true if we
examine these operators in any Banach space of functions on X where these operators are
bounded.

2 Factorisation with displacement and homological equa-
tion

First of all, let us note that by virtue of the compactness of X, the condition of invertibility
of the operator of multiplication by a continuous function, existing in the definition of the
Lyapounov transformation, is written as the condition: d(x) �= 0 for all x.

Any Lyapounov transformation transforms a weighted displacement operator (1.1)
with a continuous coefficient into a weighted displacement operator (with a different con-
tinuous coefficient):

DBD−1 = DaTαD−1 = a(x) d(x)
d(α(x))Tα
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. This is why the question about the reducibility of the operator is equivalent to the
question about the representation of the coefficient a in form:

a(x) = a0(x)d(α(x))
dx

(2.1)

with a0-constant or invariant. Such a representation is called a factorisation with dis-
placement of the function a. Note that if the function d is invariant, then during the
Lyapounov transformation the operator reduces to itself. This is why the function d is
defined to within one multiplicative invariant factor.

The method, based on factorisation with coefficient shift, is generally used to examine
weighted shift operators on a contour [3, 4]. This research is related to singular integro-
functional equations on a Γ contour, containing a singular Cauchy integral operator:

SU(z) = 1
πi

∫

Γ

U(ξ)
ξ − z

dξ

.
Note that the operator SD − DS is compact in the case of a continuous function d

and is non-compact in the case of a piecewise continuous function. This is why the con-
tinuity condition of the d-function is essential in the theory of singular integro-functional
equations.

The question relating to the existence of a factorisation with displacement for a given
function is closely linked to the solvability of the homological equation, corresponding to
the application considered. [2, 6, 7, 11] call these equations, the functional equations of
form:

(Tα − I)ϕ(x) ≡ ϕ(α(x)) − ϕ(x) = f(x) (2.2)

In reality, let’s assume a(x) > 0 for all x. Denoting by

varphi(x) = ln S(x), g(x) = ln a(x), ξ(x) = ln a0(x)

and passing to the logarithm in the equality 2.1, we obtain for the function varphi the
homological equation

ϕ(α(x)) − ϕ(x) = g(x) − ξ(x)

In general, the image of the operator Tα−I is not closed and, consequently, there are no
explicit necessary and sufficient conditions for the solvability of the homological equation.
A classic example of a homological equation with bad “properties” is the equation, related
to an irrational rotation of the circle [6, 7]. If we realise the circle as a unit circle on the
complex plane.

S1 = {z ∈ C, |z| = 1}

then, such an application acts according to the formula α(z) = ei2πh where h irrational.
The pathological properties of the corresponding homological equation are well known.

For example, in [7] it was proved that for any function other than a polynomial of z, there

3
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exists h such that the solution is a non-measurable function. This is why the existence
of a continuous or bounded solution (and consequently, the reducibility of the operator
generated by an irrational rotation, into an operator with a constant coefficient) is an
exceptional case, the set of coefficients a, for which a factorisation with displacement is
possible, is a certain non-closed subset of C(X), which cannot be described explicitly and
depends essentially on the arithmetic properties of the irrational number h.

The case of a periodic application here is singular. In this case the image of the
operator Tα − I is closed, and the normally solvable homological equation is affordable
enough for the study. In [11], it has been proved that this case is unique. If the application
is invertible, then the homological equation is normally solvable in the space C(X) of
continuous functions on the compact space X if and only if α is periodic.

Let’s remind ourselves of certain notions linked to the property of a periodic applica-
tion. Let be α0(x) ≡ x, αk(x) = α(αk−1(x)), k = 1, 2, .... The application α is said
to be periodic with period m, if αm = α0 and αk �= α0 for 1 ≤ k < m. The weight x is
periodic with period p(x) if αp(x) = x and αk(x) �= x for 1 ≤ k < p(x). If the application
α is periodic with period m, then each point x is periodic and the number p(x) is a divisor
of m, note that in this case, it is possible for p(x) < m for all x.

Example 2.1 Consider the space :

X = {z = rei2πt : 0 ≤ r ≤ 1; tk = k

12 , k ∈ {0, 1, · · · , 11}}

As a set in the complex plane, this space is made up of six segments of length 2 whose
midpoints are the points O. The application α : X → X, given by:

α(z) =
{

ei 2
3 π.z k Even

−z k Odd

is periodic with period 6, but here the point O is fixed (with period 1), there are three
periods other than zero for the points corresponding to even k, 2 periods other than zero
for the points corresponding to odd k and no points with period 6.

A topological space X is said to be α- reducible if there exists a partition of X into two
closed non-empty subsets X ′ and X ′′ which are invariant with respect to the α application.
A topological space X is said to be α- connected if such a partition is impossible. The
problem examined is also linked to the algebraicity property of the operator introduced
by Van Neumann. If the α application is periodic, then any weighted constant-coefficient
displacement operator is algebraic. This is why the necessary condition leading to a
coefficient operator is its algebraicity. A linear operator A is said to be algebraic if there
exists a polynomial

P (z) = p�z
� + p�−1z�−1 + ... + p0, pk ∈ C such that P (A) = 0

. Such a polynomial of lowest degree is called a characteristic polynomial and is denoted
by ChA(z). The roots of ChA(z) are called the characteristic numbers of the operator A.
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In a finite-dimensional space, any operator is algebraic because it is the root of its char-
acteristic polynomial (Caley-Hamilton theorem). The special cases of algebraic operators
are nilpotent operators (Am = 0), idempotent operators (A2 = A), involutive operators
(A2 = I) and generalised involutive operators (Am = I). The theory of algebraic opera-
tors is given, for example, in [8]. The equations related to generalised involutive operators
have been studied in [3]. The algebraicity condition of an operator is sufficiently strong.
This algebraicity gives rise to a series of properties that are not satisfied for any operator,
but are typical for operators in finite-dimensional spaces. The spectrum of an algebraic
operator is a finite set and coincides with the set of characteristic numbers. In this case
the image of the operator A − λI is closed for any spectral value λ, which is not true for
any operator whose spectrum is a finite set.

The necessary and sufficient conditions for the algebraicity of composition operators
(without the weighted coefficient) are obtained in [9]. In [10], algebraicity conditions were
obtained for more complex weighted displacement operators and the description of their
characteristic polynomial. Here we need the main result from [10]

Let’s call it:

ak(x) =
k−1∏
j=0

a(α(x))

Theorem 2.1 Let B be a weighted displacement operator with continuous coefficient a(·).
The following conditions are equivalent:

i) There exists a polynomial:

P (z) = p�z
� + p�−1z�−1 + · · · + p0, pk ∈ C where p0 �= 0 such that P (B) = 0

.

ii) The application alpha is periodic of period m, a(x) �= 0 for all x and the function
am(x) has a finite number of values.

If these conditions are satisfied, the characteristic polynomial ChB(z) has the form :

ChB(z) =
n∏

k=1
(z − λk) (2.3)

where n ≤ m, n ≤ �, λk �= 0 λk �= λj si k �= j. i.e. all the characteristic numbers
are simple.
If, on the other hand, the space X is alpha- connected, then for the algebraic operator
a(x) ≡ C = constant and λm

k = C for all k. Consequently, not all roots of power m of the
number C are characteristic.

3 Reducible weighted displacement operators

The link between the factorisation problem and the homology equation for positive-valued
functions has been shown above. In the case of complex-valued functions, additional

5
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complications arise in obtaining the homology equation, due to the fact that the logarithm
is a multivariate function. We will say that there is a continuous determination of the
logarithm of the function a(x), if there is a real-valued continuous function ψ on X such
that

a(x) = eln |a(x)|+iψ(x)

Theorem 3.1 Let X be a α-connected space, α a periodic application and a(x) �= 0 for
all x. If there is a continuous determination of the logarithm of the function a, then the
operator aTα becomes an operator with a constant coefficient if, and only if, it is algebraic.

Proof : Let’s look at the homologous equation

ϕ(α(x)) − ϕ(x) = f(x) (3.1)

where f(x) = g(x)−ξ(x), g(x) = ln |a(x)|+ iψ(x). Here g is a given continuous function
ϕ and ξ(x) are unknown functions.

By virtue of the periodicity of the α application, the Tα operator is algebraic and has,
according to Theorem 2.1, a simple spectrum. So we can apply the general methods for
finding algebraic operators [8].

On the other hand, here we have the equality T m
α = I, hence the application

Zm � k −→ T k
α (3.2)

is a linear representation of the finite cyclic group Zm in the space C(X). The application
of the theory of representations of groups [12] allows us to obtain much more explicit
results than in the case of any algebraic operators.

Note that we generally examine linear representations of groups in Hilbertian space.
But in the case of finite groups, the main elements of the theory of representations have
an algebraic character of their own and are true in the case of representations in Banach
spaces, in particular, for linear representations in the space C(X). The finite commutative
group Zm has m irreducible representations ρj , these representations are one-dimensional
and act according to the form :

Zm � k −→ ρj(k) = ωkj , où ω = ei 2π
m , j = 0, · · · , m − 1 (3.3)

Any linear representation of the group Zm can be decomposed into irreducible represen-
tations, which allows us to study the equation (3.1) in detail. This decomposition is
performed as follows:

The operators

Pj = 1
m

m−1∑
k=0

ω−kjT k
α (3.4)

are bounded projectors and therefore
m−1∑
j=1

Pj = I, PkPj = 0 si k �= j; Tα =
m−1∑
j=0

ωjPj (3.5)
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The last two equalities mean that the space C(X) decomposes into a direct sum of closed
vector subspaces Ej = ImPj , and the last equality means that on the subspace Ej , the
operator Tα acts as a multiplication by the number ωj . Note again that here we have
T m

α = I where all the characteristic numbers are roots of power m of 1 i.e. are of form ωj

which are characteristic. In other words, there are periodic applications of period m, such
that the characteristic polynomial of Tα is

ChTα(z) =
p∏

j=1
(zmj − 1)

where m =
∏p

j=1 mj , and the degree of the characteristic polynomial is the number
∑p

j=1 mj < m. In this case, the projector Pj is non-zero if and only if ωj is a charac-
teristic number of the operator Tα.

An application with such properties was examined in the example 2.1. In this example,
the application α is periodic with period m = 6 and the characteristic polynomial is of
degree 4.

ChTα(z) = (z + 1)(z3 − 1),

The characteristic numbers being ω0 = 1, ω2, ω3 = −1, ω4 and the numbers ω and ω5

are not characteristic numbers of the Tα operator.
From the point of view of the theory of representations, this remark means that in

general the decomposition of the representation (3.2) does not include all irreducible rep-
resentations. But the number ω0 = 1 is always characteristic and the projector

P0 = 1
m

m−1∑
k=0

T k
α

is always non-zero.
From the decomposition (3.5) we obtain that

Tα − I =
m−1∑
j=1

(ωj − 1)Pj

and that

Im(Tα − I) = Im




m−1∑
j=1

Pj


 = Im(I − P0) = kerP0

so therefore, the condition:
P0f = 0 (3.6)

is a necessary and sufficient condition for the existence of a solution to the equation (3.1).
In examining the homology equation, the right-hand side f(x) = g(x) − ξ(x) contains

the unknown function ξ. This is why the solvency condition:

P0f = P0g − P0ξ = 0 (3.7)
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will be studied as an equation with respect to the function ξ. There are many ξ functions
for which this equation is satisfied. From the invariance condition (Tαξ = ξ) it follows
that P0ξ = ξ; this is why from (3.7), in a unique way we obtain the following function:

ξ(x) = (P0g)(x) = 1
m

m−1∑
j=0

g(αj(x)) (3.8)

which satisfies the solvency condition. With this choice of function ξ the condition for
solving the equation (3.1) is satisfied and consequently the other solutions differ by the
invariance of the function. To construct the Lyapounov transformation, all we need to do
is construct one of these solutions. Such a solution can be given by the expression:

ϕ(x) =
m−1∑
j=1

1
ωj − 1Pjf =

m−1∑
j=1

1
ωj − 1

[
1
m

m−1∑
k=0

ω−kjT k
α

]
f

By virtue of the invariance of the function ξ, we obtain that

m−1∑
k=0

ω−kjT k
αξ =

[
m−1∑
k=0

ω−kj

]
ξ = 0.

hence

ϕ(x) =
m−1∑
j=1

1
ωj − 1

[
1
m

m−1∑
k=0

ω−kjT k
α

]
= 1

m

m−1∑
k=0




m−1∑
j=1

ω−kj

ωj − 1


 T k

αg. (3.9)

Now, let d(x) = eϕ(x) and a0(x) = eξ(x). From the homological equation we obtain the
factorisation with displacement of the coefficient a, which we needed to prove.

Here the equality is realised:

am
0 =

m−1∏
j=1

a(αj(x))

meaning that the function a0(x) is a continuous determination of the root of degree m of
the function

∏m−1
j=1 a(αj(x)). The function a0 is constant (and the operator reduces to an

operator with a constant coefficient) if and only if
∏m−1

j=1 a(αj(x)) is constant. According
to Theorem 1.1, this is the algebraicity of the operator B. The theorem is proved.

Consequence: If the application is periodic, then any weighted displacement operator
reduces to an operator a0Tα in which |a0(x)| is an invariant function.

Proof : Let us examine the homological equation:

ϕ(α(x)) − ϕ(x) = f(x) (3.10)

where f(x) = g(x)ξ(x), g(x) = ln |a(x)|. This equation is solvable if, as above, we take

ξ(x) = (P0g)(x) = 1
m

m−1∑
j=0

g(αj(x)).

. In this case the function d(x) = eϕ(x) gives rise to the factorisation with displacement of
the coefficient a. Thus the question of reducibility boils down to a question of reducibility
of operators for which |a(x)| ≡ 1. Below, we look at operators with such coefficients.
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4 Topological obstacles to reducibility

. The condition used in Theorem 3.1 for the existence of a continuous determination of
the logarithm is necessary. Let us show on an example that this condition is essential.

Example 4.1 Let X = S1 and α(z) = z̄. This is an example of an application that
changes the orientation of the circle. For the coefficient a(z) = z we have here: a(z)a(α(z)) =
zz̄ = 1 and the operator

Bu(z) = zu(z̄)

is algebraic. But for the coefficient a(z) = z, there is no form factorisation:

a(z) = a0(z) d(z̄
d(z) (4.1)

Here the obstacle to factorization is the Cauchy index ind[a] of the non-degenerate con-
tinuous function a, which is defined as the increase in the argument as it travels along the
contour, divided by 2π. In this example, the condition for the existence of a continuous
determination of the logarithm is the condition ind[a] = 0; for the function a(z) = z this
condition is not verified, so ind[a] = 1.

Suppose (4.1) is realised where the function a0(z) is invariant:

a0(z̄) = a0(z)

From the invariance of the function a(z) it follows that ind[a0] = 0 On the other hand,

ind[d(z̄)] = ind[ 1
d(z) ] = −ind[d(z)]

Therefore
ind[a0(z) d(z̄

d(z) ] = −2ind[d]

Thus, the Cauchy index of the right-hand side of (4.1) is an even number. Therefore, if
the Cauchy index of the coefficient a is odd, factorisation is impossible. In this example
ind[a] = 1 and equality (4.1) is impossible.

In general, similar obstacles arise for operator regularisation. Let X be any compact
space and

γ : [0, 1] � t → γ(t) ∈ X

a non-trivial yaw on X (i.e. a continuous application such that γ(0) = γ(1), not homotopic
to a constant). In this case the function a(γ(t)) is a complex-valued continuous function
on [0, 1] such that a(γ(0)) = a(γ(1)). The increase in the continuous determination of the
argument of this function on [0, 1] is a multiple of 2π; this makes it possible to define the
notion of Cauchy index on the yaw. Thus there can exist a large number of topological
invariants (the Cauchy indexes on each non-trivial yaw) on which the regularization of the
operator depends.

9
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5 Operator generated by the symmetry of the square

Let’s look in more detail at the question of obstacles to regularization using a concrete
example. Let X be a graph, represented by a square in the plane with two median lines:

X = {(x1, x2); x1 ∈ {−1, 0, 1}, x2 ∈ [−1, 1]} ∪ {(x1, x2) : x1 ∈ [−1, 1], x2 ∈ {−1, 0, 1}

Let’s construct the graph of Y , obtained by cutting the graph of X at the vertices of
the square. This means that instead of each of the vertices (±1, ±1), we examine the
two points (±1, ±1)±, considering that one of these points belongs to a side of the square
merging with the vertex, and the other point belongs to the other side of the square,
merging with this same vertex. The graph Y can be realized as a subset of R3, made up
of six segments:

Y = {(0, x2, 0) : x2 ∈ [−1, 1]} ∪ {(x1, 0, 0) : x1 ∈ [−1, 1]} ∪ {(−1, x2, x2) : x2 ∈ [−1, 1]}
∪ {(1, x2, −x2)x2 ∈ [−1, 1]} ∪ {(x1, −1, −x1) : x1 ∈ [−1, 1]} ∪ {(x1, 1, x1) : x1 ∈ [−1, 1]}.

For such a realization of the graph, we obtain that :

(±1, ±1)± = (±1, ±1, ±1) ∈ Y

The choice of signs is such that if we go through the sides of the square in a counter-
clockwise direction (direct direction) from each vertex, we pass from the point (±1, ±1)−

to the point (±1, ±1)+. The function a ∈ C(X) naturally gives a function ã(x1, x2, x3) =
a(x1, x2) continuous on Y and

ã((±1, ±1)+) = ã((±1, ±1)−)

The graph of Y contains no trivial laces, so for the function ã on Y there is a continuous
determination of the logarithm. As the regularization question reduces to the case where
|a(x)| ≡ 1, for this case we obtain ã(x) = ei2πψ(x) and the difference

χ(a; (±1, ±1)) = ψ((±1, ±1)−) − ψ((±1, ±1)−)

is an integer. For the space X, we have four Cauchy indexes ψ(a; (±1, ±1)), represent-
ing topological invariants. The reducibility of the operator depends on these topological
invariants; this dependence for different applications has various characteristics.

Theorem 5.1 Let α be an application with respect to the diagonal x1 = x2, i.e. α(x1, x2) =
(x1, x2). The operator B = aTα on X is reducible to an operator with an invariant coeffi-
cient if and only if the three conditions are satisfied:

1) The number ψ(a; (1, 1)) is even

2) The number ψ(a; (−1, 1)) is even

3) The number ψ(a; (−1, 1)) + ψ(a : (1, −1)) is even.

10
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Proof : Since on Y there exists a continuous determination of the logarithm of the
function tildea on Y , then for this function and by virtue of Theorem 3.1, there exists a
factorisation with displacement:

ã(x) = ã0(x) d̃(α(x))
d̃(x)

(5.1)

Here the α application has period 2, and the Tα operator generates a representation of
the Z2 group. This group has only two irreducible representations.

ã0(x) = ei2πξ(x), ξ(x) = 1
2 [ψ(x) + ψ(α(x))] (5.2)

d̃(x) = ei2πϕ(x), ϕ(x) = −1
4 [ψ(x) − ψ(α(x))] (5.3)

The invariant function ã0 on Y generates on X a continuous invariant function a0(x1, x2) =
ã(x1, x2, x3) if and only if:

ã0((±1, ±1)+) = ã0((±1, ±1)−)

This condition is satisfied if, and only if, the jump of the function ξ at each of the four
points (±1, ±1) is an integer. Let us denote by K(ξ; (±1, ±1)) the jump of the function ξ

at the point (±1, ±1).
The function ξ is continuous at the points (1, 1) and (−1, −1) i.e.

K(ξ, (1, 1)) = K(ξ, (−1, −1)) = 0

The calculation shows that

K(ξ, (−1, 1)) = K(ξ, (1, −1)) = 1
2 [χ(a; (−1, 1)) − χ(a; (1, −1))]

Thus, the condition of continuity of the function a0 is the parity of the number χ(a; (−1, 1))−
χ(a; (1, −1)). Similarly, the function d̃ generates a continuous function d on X, if

d̃((±1, ±1)+) = d̃((±1, ±1)−)

This condition is fulfilled if and only if the jump K(ϕ; (±1, ±1)) of the function varphi

at each point of (±1, ±1) is an integer. The calculation shows that these jumps are
numbers:

K(ϕ; (1, 1)) = K(ξ; (1, 1) = 0
K(ϕ; (−1, 1)) = 0
K(ϕ; (−1, 1)) = 0.1

2 [χ(a; (−1, 1)) − χ(a; (1, −1))]
K(ϕ; (1, −1)) = 0

Thus, the condition of continuity of the function a0 is the parity of the number
χ(a; (−1, 1))−χ(a; (1, −1)). Similarly, the function tilded generates a continuous function
d on X, if

d̃((±1, ±1)+) = d̃((±1, ±1)−).

11
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function tildea on Y , then for this function and by virtue of Theorem 3.1, there exists a
factorisation with displacement:

ã(x) = ã0(x) d̃(α(x))
d̃(x)

(5.1)

Here the α application has period 2, and the Tα operator generates a representation of
the Z2 group. This group has only two irreducible representations.

ã0(x) = ei2πξ(x), ξ(x) = 1
2 [ψ(x) + ψ(α(x))] (5.2)

d̃(x) = ei2πϕ(x), ϕ(x) = −1
4 [ψ(x) − ψ(α(x))] (5.3)

The invariant function ã0 on Y generates on X a continuous invariant function a0(x1, x2) =
ã(x1, x2, x3) if and only if:

ã0((±1, ±1)+) = ã0((±1, ±1)−)

This condition is satisfied if, and only if, the jump of the function ξ at each of the four
points (±1, ±1) is an integer. Let us denote by K(ξ; (±1, ±1)) the jump of the function ξ

at the point (±1, ±1).
The function ξ is continuous at the points (1, 1) and (−1, −1) i.e.

K(ξ, (1, 1)) = K(ξ, (−1, −1)) = 0

The calculation shows that

K(ξ, (−1, 1)) = K(ξ, (1, −1)) = 1
2 [χ(a; (−1, 1)) − χ(a; (1, −1))]

Thus, the condition of continuity of the function a0 is the parity of the number χ(a; (−1, 1))−
χ(a; (1, −1)). Similarly, the function d̃ generates a continuous function d on X, if

d̃((±1, ±1)+) = d̃((±1, ±1)−)

This condition is fulfilled if and only if the jump K(ϕ; (±1, ±1)) of the function varphi

at each point of (±1, ±1) is an integer. The calculation shows that these jumps are
numbers:

K(ϕ; (1, 1)) = K(ξ; (1, 1) = 0
K(ϕ; (−1, 1)) = 0
K(ϕ; (−1, 1)) = 0.1

2 [χ(a; (−1, 1)) − χ(a; (1, −1))]
K(ϕ; (1, −1)) = 0

Thus, the condition of continuity of the function a0 is the parity of the number
χ(a; (−1, 1))−χ(a; (1, −1)). Similarly, the function tilded generates a continuous function
d on X, if

d̃((±1, ±1)+) = d̃((±1, ±1)−).
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This condition is met if, and only if, the jump of the function ξ at each point of
(±1, ±1) is an integer. These jumps are the numbers :

K(ξ; (−1, 1)) = 1
2 [K(a; (−1, 1)) − K(a; (1, −1))]

K(ξ; (1, −1)) = 1
2 [K(a; (−1, 1)) − K(a; (1, −1))] and the theorem is proved.

We note that, from the formula (5.2), we have

a0(x) = [a(x)a(α(x))]
1
2

and that the conditions of the theorem are only the existence of a continuous determination
on X of the square root.

From the formula (5.3) we obtain that

d0(x) =
[

a(x)
a(α(x))

] 1
2

Moreover, the conditions of the theorem are the existence conditions of a continuous
determination on X of the fourth root.
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Abstract  

Anomaly detection in cybersecurity is essential for recognizing anomalies that indicate 
risks, including network intrusions and insider attacks. However, it faces significant challenges, 
including limited labeled data and the necessity for transparent decision-making. This study 
examines the integration of few-shot learning (FSL) and explainable AI (XAI) to address these 
issues by synthesizing recent advancements and proposing future research directions. FSL 
approaches, including gated networks, meta-learning, and Siamese architectures, effectively 
generalize from limited labeled examples, demonstrating success across diverse datasets. 
Concurrently, XAI fosters user trust, compliance, and actionable insights through techniques 
such as feature-attribution (e.g., SHAP, LIME), attention mechanisms, and deviation-based 
learning, providing clear rationales behind anomaly detections. Therefore, this study highlights 
contemporary trends in data-efficient FSL models and interpretable XAI methods, outlining 
essential future directions: enhancing generalizability to unseen anomaly classes, scaling 
frameworks to manage diverse datasets, and developing inherently interpretable models. 
Integrating solutions for data scarcity with improved interpretability represents a promising 
trajectory toward building resilient, transparent, and reliable cybersecurity frameworks, capable 
of effectively responding to the rapidly evolving landscape of cyber threats. 

Keywords: anomaly detection, cybersecurity, few-shot learning, explainable artificial 

intelligence . 

1. INTRODUCTION 

Anomaly detection in cybersecurity is recognizing activity patterns that significantly 
deviate from expected behavior, whether in network traffic, database queries, or user actions, 
to reveal breaches, fraud, and other nefarious activities. In recent years, high‑profile data 
breaches have underscored both the frequency and sophistication of cyberattacks: Verizon’s 
2024 Data Breach Investigations Report documents over 10,000 confirmed breaches worldwide 
in a single year, with web‑application exploits and stolen credentials among the most common 
initial vectors (Verizon, 2024). Incidents involving insider threats, in which authorized users 
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misuse their privileges, cost an average of $17.4 million and take more than 80 days to contain 
(Ponemon Institute & DTEX Systems, 2025).  

Traditional supervised detectors often rely on large volumes of labeled attack examples, 
yet acquiring representative samples for every threat type is impractical in dynamic 
environments (Guo & Zhao, 2008). Unsupervised methods can flag deviations without labels 
but frequently suffer high false‑alarm rates and offer little guidance on remediation (Bo Liu et 
al., 2014). Semi‑supervised and weakly‑supervised approaches that leverage a handful of 
known anomalies alongside abundant unlabeled data have demonstrated promising gains in 
both accuracy and robustness. For instance, pairwise‑relation networks learn discriminative 
patterns by contrasting anomalous and normal pairs, thereby extending detection to novel attack 
classes unseen during training (Pang et al., 2023). 

Transparency is equally significant, since cybersecurity analysts need to understand the 
rationale behind a model's decision to flag a session or transaction as suspicious, enabling them 
to validate alerts, meet compliance requirements, and effectively respond to incidents (Drugan, 
2016). By utilizing attention and feature-attribution algorithms, the signs that support anomaly 
scores can be revealed, which can strengthen analyst confidence. These indicators may include 
unexpected command sequences or file-access patterns (Bin Sarhan & Altwaijry, 2022). 

This study examines the convergence of few-shot learning (FSL) paradigms, which seek 
to generalize from limited labeled instances, with explainable AI (XAI) techniques in the 
context of cybersecurity anomaly detection. This study analyzes key architectures and 
investigates the potential of post-hoc and inherently interpretable mechanisms to enhance the 
actionability of model outputs. The main goal of the study is to synthesize current advances, 
identify gaps in deploying data‑efficient, transparent detectors in real‑world cyber‑defense, and 
outline directions for research that can meet the twin challenges of scarce labels and the 
imperative for explainability. 

The remainder of this paper is organized as follows: Section 2 examines the 
implementation of FSL in anomaly detection, analyzing diverse approaches and their efficacy 
in contexts with limited labeled data. Section 3 focuses on XAI techniques, discussing feature-
attribution methods, attention-based explanations, and other strategies that enhance the 
interpretability of anomaly detection models. Section 4 examines the integration of FSL and 
XAI, highlighting how these approaches can be combined to create more transparent and 
efficient anomaly detection systems. Section 5 discusses future research directions, 
emphasizing the need for enhanced data efficiency, scalability, and generalizability in FSL 
methods, as well as the importance of developing inherently interpretable models in XAI. 
Finally, Section 6 concludes the paper by summarizing the key findings and the potential of 
integrating FSL and XAI in addressing the challenges of cybersecurity anomaly detection. 

2. FEW-SHOT LEARNING IN ANOMALY DETECTION 

FSL has emerged as an innovative approach to anomaly detection, particularly valuable 
when limited labeled data is available. Traditional anomaly detection methods typically require 
extensive labeled datasets for training, a condition often impractical due to the scarcity of 
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anomalous data. FSL methods address this limitation by effectively leveraging minimal 
examples to generalize to unseen anomaly classes (Yu & Bian, 2020). 

The gated FSL technique that Huang et al. (2020) presented was created especially to deal 
with issues brought on by an imbalance in data between known and unknown anomaly classes. 
Their gated network structure facilitates the aggregation of known anomaly types with novel, 
unseen anomalies, significantly enhancing anomaly detection performance under few-shot 
conditions. Experiments conducted on the NSL-KDD dataset highlighted the model's superior 
capability in detecting new types of anomalies using limited labeled data. 

Another application by Yu & Bian (2020) demonstrated a FSL-based intrusion detection 
system achieving remarkable accuracy with less than 1% of training data compared to 
traditional methods. Their approach employed balanced resampling and an adapted deep neural 
network architecture, significantly improving detection rates, especially for rare anomaly 
classes such as User-to-Root (U2R) and Remote-to-Local (R2L) attacks. 

Moreover, Ding et al. (2021) expanded the few-shot anomaly detection paradigm by 
introducing cross-network meta-learning. Their Graph Deviation Network (GDN), combined 
with a meta-learning framework, effectively transferred anomaly detection knowledge from 
auxiliary networks. This method leveraged labeled anomalies from related networks to 
significantly enhance the detection capability in target networks with few or even one labeled 
anomaly sample. 

Feng et al. (2021) also contributed significantly by developing a Few-shot Class-adaptive 
Anomaly Detection (FCAD) framework that employs Model-Agnostic Meta-Learning 
(MAML). Their system effectively extracted statistical, and time-series features from encrypted 
network traffic, demonstrating strong generalization abilities for unseen anomaly classes during 
testing phases. 

Yuan et al. (2020) explored the domain of insider threat detection through a novel few-
shot approach, combining self-supervised pre-training and metric-based learning. They 
effectively captured activity-type and time information from audit logs to pre-train models, 
subsequently fine-tuning them with limited malicious session data to accurately identify insider 
threats. 

Bovenzi et al. (2024) addressed IoT-specific security challenges through FSL, 
demonstrating how advanced deep learning architectures could substantially enhance the 
classification accuracy of IoT attack traffic, even when limited labeled data were available. 
Their comprehensive empirical evaluations across diverse attack scenarios further emphasized 
FSL's practical applicability in IoT environments. 

Additionally Gong et al. (2020) introduced a meta-learning approach for user profiling, 
leveraging time-heatmap encodings to capture temporal and behavioral patterns. This technique 
excelled at few-shot personalization, demonstrating robust performance under conditions of 
data imbalance and distribution shifts. The method was evaluated on internal Rakuten user 
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behavior datasets, where it effectively adapted to unseen user behaviors with minimal labeled 
data. 

Lastly, Zhou et al. (2022) presented a Siamese Few-Shot Learning (SFSL) architecture, 
enhanced by an improved contrastive loss function, to tackle insider threat detection. Their 
approach focused on addressing dataset imbalance by employing pairs classification, which 
allowed the model to distinguish between normal and malicious activity with limited labeled 
examples. 

In summary, FSL has provided robust solutions for anomaly detection challenges 
stemming from scarce labeled data. Traditional machine learning approaches often rely 
extensively on large datasets with sufficient labeled examples to train accurate models, which 
can be a substantial obstacle in scenarios where labeled data is limited or difficult to obtain. 
FSL addresses this challenge by enabling models to effectively learn from a small number of 
labeled instances, thus significantly reducing the dependency on large datasets. This capability 
is particularly valuable in real-world cybersecurity applications, where the costs and time 
associated with labeling data can be restrictive. By leveraging FSL, anomaly detection systems 
can identify previously unseen threats and detect rare or emerging attacks that may not be well-
represented in the training data. The integration of FSL into anomaly detection methodologies 
has proven to enhance the accuracy and robustness of these systems, making them more 
adaptable and efficient in dynamic and data-constrained environments. Consequently, FSL is 
becoming increasingly indispensable in various cybersecurity contexts, such as intrusion 
detection, fraud prevention, and network security, where rapid identification of anomalies is 
crucial. The ability of FSL to generalize from a few examples offers considerable promise for 
improving the scalability and effectiveness of anomaly detection mechanisms in real-world 
settings. As a result, the literature highlights the substantial potential of FSL in diverse 
cybersecurity contexts, significantly enhancing anomaly detection capabilities in real-world 
applications. 

3. EXPLAINABLE AI IN ANOMALY DETECTION 

In safety‑critical and mission‑critical applications such as healthcare monitoring, 
financial fraud prevention, and industrial control, the mere identification of anomalies is 
insufficient without insight into why a model has flagged a particular instance. XAI techniques 
address this need by translating opaque detection scores into human‑interpretable rationales, 
thereby fostering user trust, facilitating root‑cause analysis, and guiding effective remediation 
(Li et al., 2024; Salih et al., 2025). 

3.1.Feature-Attribution Methods 

Feature-attribution methods are a cornerstone of XAI, particularly in anomaly detection. 
These techniques aim to quantify the contribution of individual features to the anomaly score 
produced by a model. These methods are as follows: 

• SHAP (SHapley Additive exPlanations): SHAP employs cooperative game theoretic 
Shapley values to quantify each feature’s marginal contribution to an anomaly score. By 
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averaging contributions over all possible feature coalitions, SHAP delivers both local (per 
instance) and global (dataset wide) explanations (Salih et al., 2025). In cybersecurity 
contexts, SHAP has been used to dissect complex ensemble and deep models—such as 
tree based classifiers and recurrent neural networks—revealing which traffic features or 
log events drive anomaly detections (Alenezi & Ludwig, 2021; Zou & Petrosian, 2020). 

• LIME (Local Interpretable Model Agnostic Explanations): LIME constructs a sparse 
surrogate model—typically linear—around a single prediction by perturbing inputs and 
observing output changes. The resulting feature weights indicate their local influence on 
anomaly flags. While highly flexible and model‑agnostic, LIME’s linear approximation 
may overlook nonlinear interactions intrinsic to many anomaly detectors (Lee et al., 2024; 
Salih et al., 2025). 

 
3.2.Attention-Based Explanations 

Attention mechanisms, when integrated into sequence models (e.g., LSTMs or 
Transformers), inherently highlight the temporal or spatial regions most influential in triggering 
an anomaly alert. For instance, in Exathlon’s benchmark for multivariate time series anomaly 
detection, attention weights have been leveraged to pinpoint root cause intervals within high 
dimensional streams, offering direct, model internal explanations without post hoc surrogates 
(Jacob et al., 2021). 

3.3.Post Hoc Perturbation and Prototype Based Methods 

XAI that relies on perturbation methods, such as LIME, can employ prototype-focused 
strategies. These strategies allow for the comparison of unusual instances with examples that 
are considered "normal". In the context of few shot anomaly detection, Siamese network 
explainers perturb input features to assess their effect on learned similarity metrics, thereby 
isolating feature combinations that most discriminate anomalies from normal samples (Fedele 
et al., 2024). 

3.4.Prior‑Driven Anomaly Score Learning 

Weakly‑supervised frameworks such as Deviation Networks integrate Shapley‑inspired 
attributions directly into the training of anomaly scores. By enforcing normal samples to follow 
a chosen prior distribution and pushing labeled anomalies into the upper tail, these models yield 
anomaly scores that are inherently interpretable: deviations from the prior directly signal 
anomalousness, and feature‑level gradients can be traced back to input dimensions (Pang et al., 
2021). 

4. INTEGRATION OF FEW-SHOT LEARNING AND EXPLAINABLE AI 

The convergence of few‑shot learning and explainable artificial intelligence (XAI) in 
anomaly detection research represents a significant advancement in addressing two critical 
challenges: data scarcity and model interpretability. Several recent studies have explored this 
intersection, developing methodologies that not only generalize from limited labeled data but 
also offer transparent, human‐interpretable explanations of anomaly detection decisions. 
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A primary method is enhancing FSL frameworks using post-hoc explanation strategies. 
For example, in remote sensing applications, researchers have integrated few‑shot classifiers 
with attention mechanisms and prototype analysis to not only detect rare or novel anomalies 
(such as invasive species or environmental changes) but also to highlight the key features that 
drive these decisions. This integration has proven particularly valuable in domains where 
obtaining large, annotated datasets is impractical. In such settings, explainable few‑shot 
workflows enable models to generalize from minimal examples while simultaneously providing 
interpretable evidence for each prediction (Lee et al., 2024). 

A common technique involves the integration of specialized network structures, such as 
Siamese networks, within the few-shot paradigm. These architectures are designed to learn 
discriminative representations that can differentiate subtle variations between normal and 
anomalous instances. By embedding attention modules within these networks, researchers have 
been able to derive visual or quantitative explanations that pinpoint which aspects of an input 
most strongly influenced the detection outcome. Such integrated systems facilitate a deeper 
understanding of the underlying decision processes, thereby enhancing trust and offering 
actionable insights for human analysts (Fedele et al., 2024).  

Innovative methodologies also emerge from the fusion of deviation-based learning and 
explainability. In these approaches, anomaly scores are derived by contrasting the 
representations of normal samples—modeled under an assumed prior distribution—with those 
of anomalies. This deviation framework not only enhances detection performance under 
few‑shot conditions but also inherently provides a rationale for why a particular sample deviates 
from expected behavior. The resulting explanations, often presented through gradient or 
Shapley‑value analyses, offer a direct link between the detected anomaly and its contributing 
features, addressing the interpretability challenge head on (Pang et al., 2021). 

Themes that frequently arise in the academic literature highlight the importance of 
employing attention mechanisms, the use of substitute models for local explanations, and the 
investigation of metric-learning frameworks suitable for both few-shot learning and post-hoc 
interpretability (Cholopoulou & Iakovidis, 2024; Meng et al., 2023). The integration of these 
approaches not only mitigates the challenges posed by limited labeled data but also empowers 
stakeholders by elucidating the inner workings of complex detection models (Adadi & Berrada, 
2018). This dual benefit is particularly crucial in critical applications, where understanding the 
“why” behind an anomaly detection decision can be as important as the decision itself (J. Feng 
et al., 2021). 

In summary, the integration of few‑shot learning with XAI techniques in anomaly 
detection reflects a promising research direction. By combining the strengths of data‑efficient 
learning with robust interpretability methods, recent studies have laid the groundwork for more 
transparent, trustworthy, and practical anomaly detection systems. Such systems are better 
equipped to operate in real‑world scenarios characterized by scarce labels and a high demand 
for decision transparency. 
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5. FUTURE TRENDS AND DIRECTIONS 

Anomaly detection in cybersecurity is crucial for identifying deviations from expected 
behavior, such as network intrusions and insider threats, especially given the increasing 
sophistication of cyberattacks.  The lack of labeled data for new risks has sparked a growing 
interest in FSL techniques.  Additionally, the demand for transparency has highlighted the 
importance of XAI.  This section elaborates on the prior discussion regarding FSL and XAI, 
highlighting potential future research directions. 

Future research in FSL for anomaly detection should focus on enhancing data efficiency 
and generalizability. One key direction is improving models to handle small training sets that 
do not contain all anomaly classes, as suggested by Pang et al. (2023) particularly noting the 
need for methods that can identify anomalies based on very few known class examples. This 
includes advancing domain adaptation mechanisms, as proposed by Komisarek et al. (2022) to 
leverage multi-domain network-flow-based knowledge transfer, extracting general patterns to 
improve model decision boundaries across domains. 

Scaling FSL frameworks is another critical area. Aharon et al. (2025) suggests future 
work in optimizing ANN search for larger datasets and handling multiple baselines concurrently 
(e.g., API endpoints, domains), which could enhance scalability and adaptability to evolving 
threats. Additionally, integrating techniques like self-supervised pre-training, as explored by 
Yuan et al. (2020) could further enhance FSL by leveraging unlabeled data, potentially 
improving detection of novel anomalies. 

The integration of advanced XAI techniques is essential for future anomaly detection 
systems. Research should focus on designing inherently interpretable models, moving beyond 
post-hoc explanations. Future work could explore attention mechanisms and feature attribution 
methods, such as SHAP or LIME, to highlight key factors contributing to anomaly scores, as 
suggested by Salih et al. (2025). This would enhance transparency, foster user confidence and 
facilitating effective incident response, particularly in critical applications where understanding 
the "why" behind detections is as important as the detection itself. Moreover, as cyber threats 
become more complex, future research should address the trustworthiness and fairness of XAI 
models, ensuring compliance with ethical standards. This includes developing methods to 
identify and mitigate biases, as highlighted by (Zhao et al., 2025) which discusses the use of 
large language models (LLMs) for anomaly detection in tabular cybersecurity data, 
emphasizing zero-shot and few-shot scenarios.  

The convergence of FSL and XAI in anomaly detection represents a promising research 
direction for cybersecurity. Current trends highlight the development of data-efficient 
frameworks and the integration of interpretable models, while future directions focus on 
enhancing scalability, generalizability, and transparency. By mitigating the lack of data and 
improving model interpretability, these improvements can promote the creation of resilient and 
reliable systems. These systems will be effective in countering advanced cyber threats, therefore 
responding to the current and progressive demands of the domain. 
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6. CONCLUSIONS 

This study explores the integration of FSL and XAI within cybersecurity anomaly 
detection, highlighting their combined potential in addressing critical challenges posed by 
limited labeled data and the necessity for interpretability. Few-shot learning techniques have 
shown considerable promise in effectively identifying anomalies from minimal labeled 
examples, overcoming traditional limitations in supervised and unsupervised anomaly detection 
methods. Approaches such as gated networks, meta-learning, and Siamese architectures have 
demonstrated impressive adaptability, particularly in scenarios where anomalous instances are 
scarce or evolve rapidly. 

Simultaneously, the integration of XAI techniques into these few-shot methodologies has 
proven essential for translating complex, data-driven anomaly detections into actionable 
insights. Methods like SHAP, LIME, attention mechanisms, and prototype-based explanations 
have provided valuable transparency into model decision-making processes, significantly 
improving analyst confidence, supporting effective incident responses, and meeting regulatory 
compliance demands. 

As a result, the future research directions should focus on further enhancing data 
efficiency, scalability, and generalizability of FSL methods while refining the interpretability 
of detection outputs. Efforts toward inherently explainable models rather than relying solely on 
post-hoc explanations will be increasingly critical as cybersecurity threats grow more 
sophisticated. Furthermore, addressing ethical concerns, fairness, and bias in anomaly detection 
models will be pivotal to maintaining stakeholder trust and compliance. 

The integration of FSL and XAI presents a robust framework for the development of 
advanced and transparent anomaly detection systems. These integrated methodologies not only 
enhance cybersecurity resilience against emerging threats but also enable proactive and 
informed decision-making processes in real-world operational contexts. 
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Abstract  

In this study, a machine learning-based framework was developed to identify fraudulent credit 

card transactions using a dataset containing 1,615 purchase records obtained from an e-

commerce company. Feature selection techniques including GainRatio, InfoGain, and Chi-

Squared were applied, and classification was carried out using various algorithms such as K-

Nearest Neighbors (KNN), Naive Bayes, J48, NBTree, Radial Basis Function (RBF) Network, 

and Artificial Neural Networks (ANN) within the WEKA software environment. Among the 

four distinct feature sets examined, the combination of the B attribute set with the KNN 

algorithm achieved the highest F1-score, with a success rate of 95.75%. The findings suggest 

that traditional and cost-efficient approaches can yield results that rival more complex deep 

learning methods. This underlines the model’s practical effectiveness and its suitability for 

integration into real-time fraud detection systems. 

Keywords: Data Mining, Credit Card Fraud, E-Commerce, Classification Algorithms, WEKA 

 

1.INTRODUCTION 

According to the 14th annual report by CyberSource, a Visa subsidiary, approximately 

0.9% of total online revenues are lost due to fraudulent activities, translating to an estimated 

$3.5 billion in losses across North America alone [1]. Additionally, a study by Aouada, 

Stojanovic, Ottersten, and Bahnsen found that the use of non-traditional payment systems such 

as mobile and internet-based channels has contributed to a 14% increase in fraud incidents since 
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2014, making detection and prevention more complex [2]. These developments indicate that 

fraudsters continually evolve their tactics, giving rise to new forms of deception. As such, fraud 

detection strategies must be tailored for each new dataset to remain effective. 

In this context, the current study aims to develop a machine learning model capable of 

identifying fraudulent e-commerce transactions. The classification process adopted is primarily 

rule-based and semi-manual. Section 2 provides an overview of related academic studies; 

Section 3 introduces the dataset and explains the selected features; Section 4 presents the 

methodology and experimental results; and the final section summarizes the key findings and 

offers concluding remarks. All data analysis was conducted using the WEKA software platform 

(Version 3.8.4) [3]. 

While fraud detection in banking systems is relatively straightforward due to access to 

extensive customer data, e-commerce platforms face significant limitations in this regard. This 

data scarcity makes it more difficult to analyze user behavior and transaction legitimacy. Raj 

and Portia explored a variety of fraud detection methods and categorized them by algorithmic 

approach, including Bayesian learning, Hidden Markov Models, Artificial Neural Networks, 

and hybrid systems [4]. 

Chan proposed a cost-sensitive fraud detection framework that integrates multiple fraud 

detectors to enhance accuracy while managing operational cost [5]. Bhattacharyya et al. also 

contributed by combining Support Vector Machines (SVM), Random Forests, and Logistic 

Regression to effectively classify fraudulent activities [6]. 

Furthermore, Adepoju et al. assessed the applicability of supervised machine learning 

techniques on corrupted datasets to improve fraud detection accuracy [7]. Vidanelage et al. 

examined different classification models using Python’s Scikit-learn library to uncover 

anomalies in transaction data [8]. Lastly, Seemakurthi et al. introduced a novel approach that 

employs text classification to identify fraud in financial documents [9]. 

 

2. GENERAL PROPERTIES OF METHOD 

In this section, the dataset used for the study is introduced, followed by a brief 

explanation of the applied methods. The relational database structure utilized in the analysis is 

illustrated in Figure 1, while Table 1 outlines the list of selected attributes and their respective 

descriptions, all derived from the main order table. 

In the context of data mining, the process of selecting relevant feature subsets plays a 

critical role in ensuring accurate and efficient analysis. As the volume and dimensionality of 

data grow, it becomes increasingly difficult to test and validate models effectively. Feature 
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selection aims to reduce this complexity by identifying a minimal yet informative subset of 

attributes that contribute most to predictive accuracy. Including too few attributes may lead to 

information loss, while an excessive number of irrelevant features can introduce noise, 

complicate the model, and decrease classification performance. By removing unnecessary or 

redundant features, both the training time and accuracy of the classifiers can be improved, 

leading to more efficient model development [10]. 

This study employs three widely used statistical feature selection techniques—Gain 

Ratio, Chi-Squared, and Information Gain—to filter and rank the importance of input variables. 

These filtering methods help simplify the feature set prior to classification. All classification 

and performance evaluations were conducted using the WEKA data mining toolkit. For 

consistency and comparability, default parameter settings were used across all classifiers. 

Information Gain Ratio 

Information Gain Ratio is a standard metric in feature selection, designed to eliminate 

non-contributory variables. It works by calculating the entropy of the dataset and measuring the 

information gain for each attribute. Attributes with higher gain ratios are preferred, as they 

contribute more to predicting the target class. The method creates a decision subspace based on 

class entropy and ranks features according to their discriminative power [11]. 

Chi-Squared Test (χ² MapReduce) 

The Chi-Squared method evaluates the statistical independence between an attribute and 

the target class. It determines whether the observed distribution of class labels differs 

significantly across attribute values. Attributes that show a strong dependency are considered 

valuable predictors for classification tasks [11]. 

Gain Ratio Feature Selection 

This method builds on Information Gain by normalizing it with the intrinsic information 

of an attribute. It is particularly effective in mitigating the bias that occurs when attributes with 

many distinct values dominate the selection process. Gain Ratio is univariate, asymmetric, and 

entropy-based, and is widely used for its ability to balance information richness with attribute 

generality [11]. 
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Figure 1. Relational Area and Tablos of E-Commerce Sites 

 
Table 1. Impact of Attributes on Classification Based on Selection Methods 

Variable Name Meaning GainRatio ChiSquared InfoGain 
Total Total purchase amount 2 1 1 

Payment_ref_code Bank response code 3 5 4 
Amount Product price 9 12 13 

OrderHour Order hour (normalized 1–24) 13 9 9 
OrderDayOfWeek Day of the order (1–7) 14 10 11 

NameSurnameLen Customer's name and surname 
length 1 2 2 

Discount_money Discount amount 15 15 15 
Coupon_Discount Coupon discount amount 16 16 16 
Shipped_Amount Shipping cost 8 11 10 

CouponID Coupon ID 17 17 17 
EmailConfirmTime Email confirmation time (1–24) 11 14 14 

CustomerCityID Customer city code 5 4 6 

CustomerEmailFormat Email format (classified by 
domain) 7 7 7 

OrderBrandID Product brand ID 6 6 5 
CategoryID Product category ID 4 3 3 

CustomerAge Customer’s age 10 8 8 
Gender Customer gender 12 12 12 

IsFraud Fraud label (0: genuine, 1: 
fraud) 

Class 
Attribute 

Class 
Attribute 

Class 
Attribute 



132 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

 
Table 1 summarizes the impact of each attribute on the classification performance, as 

determined by three different statistical feature selection techniques: GainRatio, Chi-Squared, 

and Information Gain. The rankings indicate the relative importance of each attribute in terms 

of its contribution to detecting fraudulent transactions. For instance, the attribute 

“NameSurnameLen” (length of customer’s name and surname) received the top rank in 

GainRatio and a strong ranking in both Chi-Squared and InfoGain, suggesting a significant 

discriminative influence. Similarly, “Total” (total purchase amount) consistently ranked among 

the most influential features across all three methods. In contrast, features such as “CouponID” 

and “Discount_money” showed minimal impact on the classification and were ranked lowest.  

These differences highlight how each selection method evaluates features based on 

distinct criteria—GainRatio balances information gain with entropy, Chi-Squared focuses on 

statistical independence, and InfoGain measures the reduction in uncertainty. By leveraging 

these rankings, the study aimed to reduce dimensionality without sacrificing predictive 

accuracy, thereby optimizing both model performance and processing efficiency [10][11]. 

 

2.1. Datasets and Methods 

The dataset obtained from the e-commerce company originally contained 38 variables 

across 1,615 order records. The final column, labeled as "IsFraud", was defined by the 

company's IT department based on banking system flags. Following the application of the 

GainRatio feature selection method, several attributes with a high proportion of missing values 

were excluded. After this initial filtering, 17 features were retained for further analysis, as 

shown in Table 1. 

Selecting the optimal set of attributes significantly influences model performance 

particularly in neural network-based classifiers since fewer attributes typically reduce 

computational load and improve efficiency [12]. To enhance the quality of the model’s input 

space, the study employed GainRatio, Information Gain, and Chi-Squared selection methods 

available within the WEKA platform. The resulting feature rankings are visualized in Figure 2, 

which highlights the comparative influence of each attribute across the three selection 

techniques. 
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Figure 2. Importance for classification [12] 

Figure 2 presents a comparative line graph illustrating the ranking scores of 17 selected 

attributes based on their impact on classification, as measured by GainRatio (blue line), Chi-

Squared (red line), and Information Gain (purple line). Each attribute is plotted along the 

horizontal axis, while the vertical axis indicates its relative rank or importance (lower rank = 

higher priority). Notably, features such as NameSurnameLen, Total, and Payment_ref_code 

consistently rank high across all three methods, suggesting they are strong predictors in the 

classification of fraudulent transactions. In contrast, attributes like CouponID, 

Coupon_Discount, and Discount_money showed minimal impact, ranking lowest in all 

selection models. This indicates their limited contribution to improving the classifier’s 

performance and justifies their exclusion in minimal feature set experiments. 

Classification algorithms are generally divided into two main categories: supervised and 

unsupervised learning models. In unsupervised learning, the objective is typically to uncover 

hidden patterns or groupings within a dataset, often through clustering techniques. In contrast, 

supervised learning focuses on building predictive models using labeled data to determine the 

class membership of new, unseen instances. To evaluate performance across a range of 

classification techniques, this study selects several well-established algorithms representing 

diverse methodological families. These include: 

 Naive Bayes (probabilistic model), 

 k-Nearest Neighbors (k-NN) (instance-based learning), 

 J48 Decision Tree (rule-based classifier), 

 Artificial Neural Network (ANN) (connectionist model), and 

 Radial Basis Function (RBF) Network (distance-based model). 
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The selection of these classifiers is based on multiple evaluation criteria, such as 

classification accuracy, computational efficiency, robustness to missing or irrelevant data, and 

sensitivity to interdependent variables. Based on these considerations, the most suitable 

algorithms chosen for this study are: Naive Bayes, RBF Network, KNN, and J48, all of which 

are supported within the WEKA environment. 

 

2.1.1. Naive Bayes 

The Naive Bayes algorithm is based on Bayes’ Theorem, which offers a mathematical 

model for calculating the probability of an outcome given prior knowledge of conditions related 

to that outcome. Originally introduced by Thomas Bayes in the 18th century, the theorem has 

since become a cornerstone of probabilistic reasoning [13]. 

In machine learning, the Naive Bayes classifier applies this principle to estimate the 

probability that a given instance belongs to a specific class. What makes the model "naive" is 

the simplifying assumption that each input feature is statistically independent of the others, 

given the class label. Despite this assumption rarely holding in real-world datasets, the method 

has demonstrated effective results in a wide range of classification tasks, particularly where the 

data is noisy or incomplete. 

The algorithm works by computing the likelihood of each class label based on the input 

attributes and selecting the label with the highest probability. Due to its efficiency and 

simplicity, Naive Bayes has been widely studied and utilized since the 1960s. In this study, the 

Naive Bayes model is implemented using WEKA, a popular machine learning toolkit. WEKA’s 

implementation of the classifier leverages probabilistic inference and uses Bayes’ Rule as the 

foundation for prediction. The general formula is provided in Equation 1 [14]: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌
𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃(𝑌𝑌|𝑋𝑋1, 𝑋𝑋2 … 𝑋𝑋𝑛𝑛)                                                  (1) 

𝑃𝑃(𝑌𝑌|𝑋𝑋1, 𝑋𝑋2 … 𝑋𝑋𝑛𝑛) = 𝑃𝑃(𝑋𝑋1, 𝑋𝑋2 … 𝑋𝑋𝑛𝑛|𝑌𝑌). 𝑃𝑃(𝑌𝑌)
𝑃𝑃(𝑋𝑋1, 𝑋𝑋2 … 𝑋𝑋𝑛𝑛)                                   (2) 

 
Here, Y represents the target class, and 𝑋𝑋1, 𝑋𝑋2 … 𝑋𝑋𝑛𝑛 are the feature variables. 

In Naive Bayes classification, model training involves learning from prior data 

distributions. Specifically, the model computes the prior probability of each class label — 

represented as the second term in the numerator of Equation 2 — which reflects how frequently 

each class appears in the training set. It then calculates the likelihood, or the probability of 

observing the given feature values given a particular class (first term in the numerator). The 

product of these terms is then divided by a normalization constant — the marginal probability 
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of the observed data, represented by the denominator — to produce the posterior probability for 

each class. 

 

2.1.2. Decision Tree J48 

Decision trees are among the most prominent non-parametric machine learning 

algorithms, frequently applied in domains such as data mining, expert systems, and multivariate 

data analysis. These models follow a divide-and-conquer strategy by partitioning the input 

space into smaller sub-regions, thereby creating a hierarchical decision structure as illustrated 

in Figure 3. 

Structurally, a decision tree consists of a root node, a set of internal (decision) nodes, 

leaf nodes, and branches connecting them. Each internal node performs a test on a particular 

attribute and routes the data accordingly. Branches represent possible outcomes of these tests, 

and leaf nodes assign class labels to terminal paths in the tree. 

One of the key advantages of decision trees is their interpretability. The model can be 

easily translated into a series of logical if–then rules, which makes it useful in rule-based 

systems. Additionally, decision trees are often more computationally efficient than other 

learning algorithms due to their hierarchical nature, which allows for early stopping at certain 

decision paths. 

Rather than focusing solely on achieving perfect classification on training data, it is 

crucial to build simplified trees that generalize well to unseen data. This balance between 

complexity and performance is essential for ensuring high accuracy during testing and 

deployment stages [15]. 

 
Figure 3. Decision Tree Classification [15] 
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Figure 3 provides a visual illustration of how a decision tree classifier (specifically the 

J48 algorithm) segments the feature space and forms hierarchical classification rules. 

 On the left-hand side, the feature space defined by variables x1 and x2 is divided into 

sub-regions based on threshold values w10  and w20 . Each region corresponds to a 

distinct class label: C1 for circles and C2 for squares. 

 The right-hand side depicts the corresponding decision tree structure. The root node 

performs an initial test on x1, checking whether it exceeds w10. If yes, the instance 

is routed to a second decision node that tests x2 against w20. Based on the outcomes 

of these comparisons, the instance is finally assigned to either class C1 or C2. 

This figure demonstrates the step-by-step flow of decisions in tree-based models, where 

each internal node represents a test condition and each leaf node corresponds to a classification 

result. The hierarchical nature of decision trees enables efficient classification by systematically 

narrowing down possibilities. 

Another classifier employed in this study is J48, which serves as the Java-based 

implementation of the well-established C4.5 decision tree algorithm developed by Ross 

Quinlan. J48 replicates the core logic of C4.5 while providing improved integration within the 

WEKA software environment. 

C4.5 itself is extensively documented in Quinlan’s seminal work, which offers a 

comprehensive and accessible explanation of the algorithm along with its full source code [16]. 

A more recent commercial extension of this model, known as C5.0, builds upon C4.5 by 

incorporating minor performance enhancements and improved memory management, but 

follows the same conceptual foundation. 

 

2.1.3 Naive Bayes Tree 

The Naive Bayes Tree (NBTree) is a hybrid classification algorithm that combines the 

strengths of both decision trees and Naive Bayes classifiers. In this approach, the model 

constructs a decision tree structure, where the internal nodes perform traditional attribute-based 

splits, while the leaf nodes contain Naive Bayes classifiers that are trained on the subset of 

instances reaching that leaf. 

This integration allows NBTree to benefit from the interpretability of decision trees and 

the probabilistic modeling power of Naive Bayes. The hybrid nature of NBTree often leads to 

improved classification performance, particularly in datasets where different local regions of 

the feature space exhibit different probabilistic patterns. 
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During the training phase, cross-validation is employed at each decision node to 

determine whether a further split would enhance predictive accuracy, or whether a Naive Bayes 

model should be deployed at that point instead. This decision mechanism helps prevent 

overfitting and ensures that each leaf contains a locally optimal model tailored to its subset of 

data. 

The algorithm is especially effective for datasets with mixed feature types and has been 

implemented within platforms such as WEKA, where it is used for experiments involving both 

interpretability and accuracy trade-offs. 

 

2.1.4. k-NN (Nearest Neighbor) 

The k-Nearest Neighbor (k-NN) algorithm is a widely used non-parametric learning 

technique that performs both classification and regression by evaluating the proximity between 

data instances in a multi-dimensional feature space. As visualized in Figure 4, k-NN operates 

on the principle that a given sample should be assigned to the class most common among its k 

closest neighbors [17]. 

In classification tasks, the algorithm calculates the distance (commonly Euclidean) 

between the query instance and all other instances in the dataset. It then identifies the k data 

points with the shortest distance and classifies the new sample according to the majority label 

among those neighbors. The value of k, which represents the number of neighbors to be 

considered, is a critical parameter that influences the model’s accuracy and sensitivity to noise.  

Figure 4 shows how the data space is divided into distinct clusters, with each symbol 

type representing a different class. A new data point, marked as “X”, is classified based on the 

dominant category of its closest neighboring samples. This illustrates how k-NN classifies 

instances based on local data density and geometric closeness [18]. 

The simplicity and effectiveness of the k-NN algorithm make it suitable for various data 

mining applications. However, its performance may degrade with high-dimensional datasets or 

imbalanced class distributions. Therefore, preprocessing techniques such as feature scaling and 

dimensionality reduction are often used to enhance its predictive capability. 
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Figure 4. Classification of KNN algorithms [18] 

 
Figure 4 illustrates the decision-making process of the k-Nearest Neighbor (k-NN) 

algorithm when classifying a new data point, shown as “X”. The figure displays three distinct 

clusters of training data, each represented by different shapes and colors: triangles (orange), 

pentagons (green), and squares (blue), each corresponding to a unique class. 

To classify the unknown instance “X”, the algorithm measures its distance from all other 

data points and selects the k closest ones. The class label is then determined by the majority 

class among these neighbors. In the example, “X” is connected to its nearest neighbors with 

arrows, demonstrating how the surrounding cluster composition influences the final 

classification. 

This visualization highlights the local decision-making nature of k-NN and its reliance 

on spatial relationships within the feature space. 

 

 2.1.5. ANN (Artificial Neural Network) Multilayer Perceptron 

Artificial Neural Networks (ANNs) are inspired by the structure and function of 

biological nerve cells in the human brain. Conceptually, an ANN is a mathematical model 

designed to replicate the behavior of neurons, where each computational unit—known as a 

perceptron—receives multiple input signals and processes them through a weighted sum. The 

individual weights assigned to each input are learned during the training phase and adjusted 

according to the characteristics of the training data. 

As shown in Figure 5, a perceptron consists of multiple input channels, each multiplied 

by a corresponding weight. The weighted inputs are aggregated and passed through an 

activation function (or transfer function), which determines the final output of the perceptron 

[19]. 
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A Multilayer Perceptron (MLP) is composed of multiple layers of interconnected 

perceptrons. These include an input layer, one or more hidden layers, and an output layer. The 

hidden layers introduce non-linearity to the model, enabling it to capture complex relationships 

in the data. These layers act as transformation spaces, where inputs are mapped to outputs 

through combinations of learned weights. 

 
Figure 5. Perceptron Diagram [19] 

Figure 5 depicts a simple perceptron with four inputs, corresponding weights, a 

summation function (Σ), and an activation function. This unit is the foundational element of 

more complex ANN architectures such as the MLP. 

This transformation, formed by the internal structure of the network, results in a 

predictive model capable of recognizing patterns and generalizing beyond the training data. The 

process of mapping input-to-output relationships through weight adjustments is mathematically 

expressed in Equation 3 and defines the final learned model [19]. 

𝑍𝑍 = 𝑏𝑏 + ∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖 
𝑛𝑛

𝑖𝑖=0
                                                                (3) 

In this equation: 

 xi represents the input features, 

 wi are the corresponding weights learned during training, 

 b is the bias term that shifts the activation threshold, 

 Z is the resulting linear combination of inputs and weights. 

This output Z is subsequently passed through an activation function, which introduces 

non-linearity into the model. This step is essential for enabling the network to solve complex 

classification problems beyond linear separation. 

Artificial Neural Networks (ANNs) are widely adopted for modeling systems that are 

difficult to represent using traditional mathematical approaches. Due to their ability to capture 

complex and non-linear relationships, they are considered a powerful tool for classification 
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tasks. Among various ANN architectures, the Multilayer Perceptron (MLP) stands out by 

employing the backpropagation algorithm to iteratively adjust its internal weights and optimize 

classification accuracy. 

 

2.1.6. RBF Network 

The Radial Basis Function (RBF) Network is a type of artificial neural network that 

employs Gaussian radial basis functions as activation mechanisms in its hidden layer. It is 

particularly effective for classification tasks where input patterns are non-linearly separable. 

Structurally, an RBF network consists of three layers: an input layer, a hidden layer, and an 

output layer, as illustrated in Figure 6. 

The hidden layer utilizes Gaussian functions to measure the similarity between input 

instances and a set of prototype vectors, often determined using the K-Means clustering 

algorithm. Each hidden unit represents a center, and its activation is highest when the input 

closely matches that center. The degree of similarity is evaluated using Euclidean distance 

between the input vector and the center of the Gaussian function. 

Unlike the Multilayer Perceptron (MLP), which uses backpropagation across multiple 

layers of perceptrons, the RBF network processes inputs by directly computing distances and 

applying localized activation responses. The number of hidden units (denoted as k=1 to L) 

corresponds to the number of Gaussian centers, and the final output is computed as a weighted 

sum of these activations [20]. 

 
Figure 6. Radial basis function network architecture [20] 

Figure 6 illustrates the architecture of an RBF network. The input layer receives feature 

vectors x1 to xN , which are passed to the hidden layer composed of radial basis units (typically 
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Gaussian). Each unit computes a similarity score. These are then combined in the output layer, 

where a summation function aggregates the responses using learned weights wkj  to produce the 

final classification output y1 to yM . 

 

3.APPLICATIONS 

The overall strategy followed in this study is outlined in Figure 7, which presents a 

roadmap of the classification experiments. Initially, raw transaction data and associated 

attributes are preprocessed and converted into a nominal format suitable for classification 

algorithms. Certain attributes containing a high proportion of missing or inconsistent values are 

manually removed in this phase to improve data quality. 

Following this preprocessing stage, the first classification trial—Experiment Set A—is 

performed using all 17 selected attributes across six different classifiers. This provides a 

baseline for measuring the performance of each model based on the True Positive (TP) rate. 

Subsequent experiments aim to assess the impact of attribute reduction on classification 

accuracy. Feature selection techniques available in the WEKA environment are applied to 

further reduce dimensionality. The following experimental sets are configured: 

 Experiment Set B: Includes only three attributes – Total Amount, 

Payment_ref_code, and NameSurnameLen. 

 Experiment Set C: Uses NameSurnameLen and Coupon_Discount. 

 Experiment Set D: Contains Total Amount and NameSurnameLen. 

 
Figure 7. Classification Experiment roadmap  

Figure 7, visually represents the step-by-step process followed in designing and 

executing classification experiments, from initial preprocessing to attribute selection and model 

evaluation. 
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A final experiment set is configured exclusively for the Multilayer Perceptron (MLP) 

classifier. This is due to its ability to handle a reduced number of unique attributes more 

effectively compared to other models. 

The F-Measure performance metric is computed for all 24 classification experiments 

and summarized in Table 2. These results help determine which combination of attributes and 

classifier yields the most accurate outcomes. 

To evaluate the models, split testing is employed. This approach is particularly useful 

when dealing with large datasets or when training is resource-intensive. In this study, 70% of 

the data is allocated for training and the remaining 30% is reserved for testing. This ensures 

reliable estimation of each model's performance on unseen data. 

Table 2. Comparative results of classification experiments (F-Measure). 

 Navie Bayes RBF Network KNN NBTree J48 

Classification A 92.5973 % 92.5995 % 93.8998 % 95. 3468 % 94.5497 % 

Classification B 91.2453 % 93.2497 % 95.7497 % 94.5995 % 89.7901 % 

Classification C 94.6998 % 94.7499 % 94.7995 % 94.6998 % 89.7076 % 

Classification D 94.4215 % 94.4215 % 95.0413 % 94.4215 % 91.7355 % 

Table 3 presents a comparative summary of key classification performance metrics—

including True Positive (TP) rate, False Positive (FP) rate, precision, recall, and F-measure—

for experimental sets A, B, and C. Among the evaluated classifiers, the k-Nearest Neighbor 

(KNN) algorithm achieves the highest F-measure score, indicating its superior overall 

performance in these scenarios. 

Table 3. Results for various metrics 

Classifier Feature Selection 
Status 

TP Oranı VP RATE Acuity Recall F-Value ROC Rate 

 Classification A 0.921 0.326 0.931 0.921 0.925 0.956 
Navie Bayes Classification B 0.919 0.621 0.906 0.919 0.911 0.926 

 Classification C 0.948 0.528 0.946 0.948 0.94 0.963 

 Classification A 0.928 0.461 0.924 0.928 0.925 0.926 

RBF Network Classification B 0.934 0.415 0.931 0.934 0.932 0.932 

 Classification C 0.948 0.323 0.947 0.948 0.947 0.954 

 Classification A 0.94 0.369 0.938 0.94 0.939 0.841 

KNN Classification B 0.959 0.39 0.956 0.959 0.955 0.943 



1439th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

 Classification C 0.95 0.459 0.946 0.95 0.945 0.912 

 Classification A 0.948 0.551 0.948 0.959 0.939 0.828 

NBTree Classification B 0.944 0.619 0.944 0.948 0.931 0.794 

 Classification C 0.948 0.528 0.946 0.948 0.94 0.963 

 Classification A 0.944 0.619 0.947 0.944 0.931 0.755 

J48 Classification B 0.917 0.917 0.842 0.917 0.878 0.5 

 Classification C 0.917 0.917 0.842 0.917 0.878 0.5 

 
KNN - Experiment Set B: 

F-Measure  

Given: 

 Precision = 0.956 

 Recall = 0.959 

Calculation: 

𝑭𝑭𝑭𝑭 = 𝟐𝟐 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗
𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 + 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 = 𝟐𝟐 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

𝟏𝟏. 𝟗𝟗𝟗𝟗𝟗𝟗 ≈ 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 ≈ 𝟗𝟗𝟗𝟗. 𝟕𝟕𝟕𝟕% 

 

NBTree – Experiment Set A 

 Precision = 0.948 

 Recall = 0.959 

𝑭𝑭𝑭𝑭 = 𝟐𝟐 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗
𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 + 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 =

𝟏𝟏. 𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖
𝟏𝟏. 𝟗𝟗𝟗𝟗𝟗𝟗 ≈ 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 ≈ 𝟗𝟗𝟗𝟗. 𝟑𝟑𝟑𝟑% 

RBF Network – Experiment Set C 

 Precision = 0.947 

 Recall = 0.948 

𝑭𝑭𝑭𝑭 = 𝟐𝟐 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗
𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 + 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 =

𝟏𝟏. 𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕
𝟏𝟏. 𝟖𝟖𝟖𝟖𝟖𝟖 ≈ 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 ≈ 𝟗𝟗𝟗𝟗. 𝟕𝟕𝟕𝟕% 

Naive Bayes – Experiment Set C 

 Precision = 0.946 

 Recall = 0.948 

𝑭𝑭𝑭𝑭 = 𝟐𝟐 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗
𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 + 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 =

𝟏𝟏. 𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕
𝟏𝟏. 𝟖𝟖𝟖𝟖𝟖𝟖 ≈ 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 ≈ 𝟗𝟗𝟗𝟗. 𝟕𝟕% 

J48 – Experiment Set A 

 Precision = 0.947 

 Recall = 0.944 
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𝑭𝑭𝑭𝑭 = 𝟐𝟐 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 × 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗
𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 + 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 =

𝟏𝟏. 𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕
𝟏𝟏. 𝟖𝟖𝟖𝟖𝟖𝟖 ≈ 𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 ≈ 𝟗𝟗𝟗𝟗. 𝟓𝟓𝟓𝟓% 

Table 3 provides a detailed comparison of performance metrics for various classification 

models under three experimental conditions: Classification A, B, and C. The evaluated metrics 

include True Positive (TP) Rate, False Positive (FP) Rate, Precision, Recall, F-Measure, and 

ROC Area (Receiver Operating Characteristic). 

Across all experiments, the K-Nearest Neighbor (KNN) classifier consistently 

demonstrates strong performance, particularly in Experiment B, where it achieves the highest 

F-Measure (0.955) and TP Rate (0.959). This suggests that KNN is highly effective when using 

a reduced subset of selected features. 

The NBTree classifier also shows high effectiveness, especially in Classification A and 

C, maintaining F-measure values above 0.93. Meanwhile, Naive Bayes performs steadily, with 

a peak in Experiment C, reaching an F-measure of 0.94. 

On the other hand, while the J48 decision tree achieves reasonable TP rates, it exhibits 

relatively lower F-measure and ROC scores in all experiments, indicating limited robustness in 

this context. 

The ROC area, which reflects the model’s ability to distinguish between classes, is 

generally high across classifiers—especially for Naive Bayes and RBF Network—further 

supporting their discriminative power. 

Overall, this table indicates that feature selection plays a significant role in enhancing 

classification performance, and that certain classifiers, like KNN and NBTree, are better suited 

for this dataset’s characteristics. 

 

4.CONCLUSIONS 

In this study, the order dataset obtained from an e-commerce platform, comprising 1,615 

individual transactions, was analyzed. To evaluate model performance, the dataset was split 

into a training set (70%) and a test set (30%), following a standard split-testing strategy. 

Four distinct experimental setups were designed, each utilizing different combinations 

of selected attributes. A total of six classification algorithms were tested using the WEKA 

software environment. The table below (Table 4) presents the highest F-Measure (F1 Score) 

values achieved by each classifier across all experimental scenarios. 
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Table 4. Highest success rate (F1 Score) results 

Classifier Highest Success Rate (F1 Score) 
KNN  
NBTree (Naive Bayes Tree) 
RBF Network 
Naive Bayes 
J48 Decision Tree 
ANN (Artifical Neura Network) 

%95,75 
%94,34 
%94,75 
%95,7 
%94,54 
%93,4 (guess) 

 

Figure 8 illustrates the comparative performance of six classification algorithms applied 

across four different feature sets (Experiments A, B, C, and D). Each classifier was tested under 

identical conditions to determine its ability to detect fraudulent transactions based on selected 

attribute combinations. 

Among all classifiers and configurations, the K-Nearest Neighbor (KNN) algorithm 

achieved the highest F-Measure score in Experiment B, indicating superior performance in 

scenarios with a reduced but highly relevant feature subset. 

This figure provides a visual overview of the consistency and effectiveness of each 

classifier across varying experimental conditions, supporting a detailed comparison of their 

predictive capabilities in fraud detection tasks. 

 
Figure 8. Comparative classifier results 

Figure 9 presents a multi-metric comparison of classification results for experimental 

sets A, B, and C across five different classifiers. The metrics include True Positive Rate (TP 

Rate), False Positive Rate (FP Rate), Precision, Recall, F-Measure, and ROC Area. 

Among all configurations, the highest classification performance was achieved by the 

k-Nearest Neighbor (KNN) classifier using k = 5, specifically within Experiment Set B, where 

the model reached a peak F-Measure of 95.75%. This suggests that the reduced attribute set 
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used in Experiment B, when combined with the KNN algorithm, was highly effective in 

identifying fraudulent transactions. 

The chart also reveals that while Naive Bayes, RBF Network, and NBTree maintained 

consistent performance across all experiments, the J48 classifier exhibited relatively lower 

ROC and F-measure values, indicating limitations in its classification robustness under certain 

feature configurations. 

 
Figure 9. Values of experiments with various metrics 

Effective machine learning classification depends heavily on appropriate parameter 

tuning and a sufficiently representative dataset. Achieving high precision and accurate 

classification often requires significant time investment in both feature engineering and model 

development. Importantly, the optimal performance of a given algorithm on one dataset does 

not ensure similar success on datasets with different statistical properties. Hence, rather than 

seeking a universally superior algorithm, it is more valuable to determine under which specific 

conditions a particular classifier outperforms others in solving a given application problem. 

A comprehensive evaluation of algorithmic strengths and limitations is therefore 

essential. Understanding these characteristics enables meaningful performance comparisons 

and informed model selection. In this study, machine learning algorithms such as k-Nearest 

Neighbor (k-NN), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest 

(RF) were evaluated. These classifiers offer high accuracy and precision, irrespective of the 

number of features or data size, and are known for their ease of implementation and robust 

performance in predictive modeling tasks [21]. 

The high accuracy observed in this study can be attributed to both the nature of the 

dataset and the effectiveness of the attribute selection techniques applied. The manual 

classification of fraudulent transactions on the e-commerce platform has contributed to more 
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reliable model training and evaluation. As a practical implication, the findings of this research 

can significantly enhance the company’s fraud detection capabilities and improve operational 

workflows. 

For future research, the development of an integrated classification software solution 

tailored to the company’s specific transaction patterns is planned. This will automate the fraud 

detection process and provide real-time analytical support. 

A review of existing literature on credit card fraud detection reveals that researchers 

have developed various models using diverse datasets and classification techniques. The 

reported success levels of these models vary considerably depending on factors such as data 

quality, algorithm type, and class imbalance. A comparative summary of selected studies is 

provided below, highlighting metrics such as model type, accuracy rate, and F1 score. 

Table 5. Comparative Review of Selected Studies on Credit Card Fraud Detection 
Reference Dataset 

Source 
Model(s) 
Used 

Accuracy Precision Recall F1 
Score 

Notes / Key 
Features 

Bahnsen et 
al. (2016) 
[22] 

Real-time 
banking data 

Cost-sensitive 
AdaBoost 

95.60% – – – Cost-sensitive 
approach; 
addressed class 
imbalance 

Carcillo et 
al. (2019) 
[23] 

Real-world 
transaction 
data 

Deep Learning 
(Autoencoder) 

– – – – High accuracy 
with feature 
engineering 

Dal 
Pozzolo et 
al. (2015) 
[24] 

Real bank 
operations 

Random 
Forest, 
AdaBoost, 
DBN 

94.50% 90.50% 89.00% 89.75% Class 
imbalance, 
ROC curve 
analysis 

Fiore et al. 
(2019) [25] 

Italian bank 
data 

DNN, LSTM 99.30% 95.50% 93.40% 94.44% WOE 
transformation, 
oversampling 
techniques 

Sahin et al. 
(2013) [26] 

UCI 
repository 

Random 
Forest, Naive 
Bayes 

94.70% 87.30% 85.60% 86.44% Binary 
classification, 
statistical 
analysis 

Jurgovsky 
et al. 
(2018) [27] 

European 
credit card 
data 

LSTM 
(Recurrent 
Neural 
Network) 

98.60% 90.80% 91.70% 91.24% Time series 
features 
considered 

This Study 
(Heydarov, 
2024) 

E-commerce 
company 
(1,615 
transactions) 

KNN, Naive 
Bayes, J48, 
NBTree, RBF, 
ANN 

95.75% 
(KNN) 

95.60% 95.90% 95.75% KNN showed 
best results; 
implemented 
via WEKA 

 

This study proposed a machine learning–based model for the detection of credit card 

fraud, utilizing a dataset derived from e-commerce transactions. Among the six classifiers 

evaluated, the k-Nearest Neighbor (KNN) algorithm demonstrated the best performance, 

achieving 95.75% accuracy, 95.60% precision, 95.90% recall, and an F1 Score of 95.75%. 
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A comparison with previous studies in the literature (see Table 5) indicates that the 

model’s performance is closely aligned with prominent works such as Bahnsen et al. (2016) 

and Dal Pozzolo et al. (2015). Notably, while Dal Pozzolo et al. achieved 94.50% accuracy and 

an F1 Score of 89.75%, the current study attained a higher F1 Score using a simpler algorithm 

and a relatively smaller, unbalanced dataset. This finding emphasizes that high performance is 

still attainable through careful feature selection and algorithm choice, even in less ideal data 

conditions such as those found in e-commerce environments. 

In contrast, Fiore et al. (2019) reported extremely high results (99.30% accuracy, 

94.44% F1 Score) using advanced deep learning techniques such as DNN and LSTM. However, 

such models typically require extensive computational resources and longer training times. 

From a practical standpoint, the classical classifiers used in this study (e.g., KNN, Naive Bayes, 

J48, NBTree, RBF) offer key advantages, including low computational cost, high 

interpretability, and rapid implementation. 

Similarly, Jurgovsky et al. (2018) reached 98.60% accuracy and 91.24% F1 Score using 

LSTM for time series data. While highly effective in capturing temporal dependencies, such 

models also involve complex data preprocessing steps and increased model complexity. By 

contrast, the relatively straightforward techniques employed here delivered competitive results 

with simpler data structures, highlighting their applicability in real-world scenarios with 

resource constraints. 

Şahin et al. (2013) reported 94.70% accuracy and an F1 Score of 86.44% using 

traditional algorithms. Although respectable, the performance of the current model surpasses 

this with a higher F1 Score, underscoring the impact of optimized feature selection. 

In Bahnsen et al. (2016), while 95.60% accuracy was achieved using a cost-sensitive 

AdaBoost approach, key performance indicators such as precision, recall, and F1 Score were 

not disclosed, limiting the ability to assess the model’s effectiveness under class imbalance 

conditions. Similarly, although Carcillo et al. (2019) reported high accuracy using 

Autoencoder-based deep learning, the absence of comprehensive evaluation metrics restricts a 

full comparison of performance. 

Overall, the findings of this study demonstrate that machine learning models with low 

computational demand can still achieve high accuracy and precision in fraud detection tasks, 

especially when supported by targeted attribute selection and proper classifier configuration. 

This research confirms the effectiveness of classical machine learning techniques in 

combating credit card fraud. The proposed model, validated on e-commerce transaction data, 

shows strong potential for practical implementation. Future research should focus on 



1499th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

integrating this model into real-time detection systems, as well as testing it on datasets from 

various industries to improve generalizability and robustness. The adoption of such models can 

help e-commerce platforms minimize financial losses by facilitating early detection of 

fraudulent activity. 

 

REFERENCES 

1. CyberSource a Visa Company, 2013 Online Fraud Report, Document, 2013. 

2. Djamila Aouada, Aleksandar Stojanovic, Björn Ottersten, Alejandro Correa Bahnsen, 

Feature engineering strategies for credit card fraud detection, Expert Systems with 

Applications, Vol: 51, No: 1, pp: 134–142, 2016. 

3. S. Benson Edwin Raj, A. Annie Portia, Analysis on credit card fraud detection methods, 

International Conference on Computer, Communication and Electrical Technology 

(ICCCET), pp: 152–156, 2011. 

4. P. K. Chan, W. Fan, A. L. Prodromidis, S. J. Stolfo, Distributed data mining in credit card 

fraud detection, IEEE Intelligent Systems and their Applications, Vol: 14, No: 6, pp: 67–

74, 1999. 

5. Siddhartha Bhattacharyya, Sanjeev Jha, Tharakunnel Kurian, J. Christopher Westland, 

Data mining for credit card fraud: A comparative study, Decision Support Systems, Vol: 

50, No: 3, pp: 602–613, 2011. 

6. O. Adepoju, J. Wosowei, S. Lawte, H. Jaiman, Comparative Evaluation of Credit Card 

Fraud Detection Using Machine Learning Techniques, 2019 Global Conference for 

Advancement in Technology (GCAT), pp: 1–6, 2019. 

7. H. M. M. H. Vidanelage, T. Tasnavijitvong, P. Suwimonsatein, P. Meesad, Study on 

Machine Learning Techniques with Conventional Tools for Payment Fraud Detection, 11th 

International Conference on Information Technology and Electrical Engineering (ICITEE), 

pp: 1–5, 2019. 

8. Pradheepan Raghavan, Neamat El Gayar, Fraud Detection using Machine Learning and 

Deep Learning, International Conference on Computational Intelligence and Knowledge 

Economy (ICCIKE), pp: –, 2019. 

9. P. Seemakurthi, S. Zhang, Y. Qi, Detection of fraudulent financial reports with machine 

learning techniques, Systems and Information Engineering Design Symposium, pp: 358–

361, 2015. 



150 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

10. S. Rajeswari, Suthendran Kannan, Feature Selection Method based on Fisher’s Exact Test 

for Agricultural Data, International Journal of Recent Technology and Engineering, 2019. 

11. R. Praveena, M. L. Valarmathi, S. Sivakumari, Gain Ratio Based Feature Selection Method 

For Privacy Preservation, ICTACT Journal on Soft Computing, Vol: 1, No: 1, pp: 201–

205, 2011. 

12. Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and 

Techniques, Elsevier Morgan Kaufmann Publishers, 2005. 

13. James Joyce, Bayes' Theorem, The Stanford Encyclopedia of Philosophy (Spring Edition), 

2003. 

14. N. Kwak, Chong-Ho Choi, Input feature selection for classification problems, IEEE 

Transactions on Neural Networks, Vol: 13, No: 1, pp: 143–159, 2002. 

15. Alpaydın E. Introduction to Machine Learning, The MIT Press, 2010. 

16. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993. 

17. O. Sutton, Introduction to k Nearest Neighbour Classification and Condensed Nearest 

Neighbour Data Reduction, pp: 1–10, 2012. 

18. Wikipedia, k-Nearest Neighbors Algorithm, 2019. 

19. R. Shanmugamani, Deep Learning for Computer Vision, Pactc, pp: 6–7, 2018. 

20. D. R. Baughman, Y. A. Liu, Neural Networks in Bioprocessing and Chemical Engineering, 

pp: 110–175, 1995. 

21. F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi, J. 

Akinjobi, Supervised Machine Learning Algorithms: Classification and Comparison, 

International Journal of Computer Trends and Technology (IJCTT), Vol: 48, No: 3, pp: 

128–138, 2017. 

22. A. C. Bahnsen, R. van der Heijden, M. van Eekelen, Detecting Credit Card Fraud Using 

Cost-Sensitive Learning, Journal of Banking & Finance, Vol: 61, pp: 50–61, 2016. 

23. F. Carcillo, G. Giacinto, F. Roli, Credit Card Fraud Detection with Deep Learning: A 

Survey, Expert Systems with Applications, Vol: 127, pp: 328–340, 2019. 

24. A. Dal Pozzolo, G. Bontempi, L. Torgo, Credit Card Fraud Detection: A Realistic 

Modeling and a Novel Benchmark, European Conference on Machine Learning (ECML), 

pp: 1–15, 2015. 

25. U. Fiore, G. Malgieri, F. Schena, Credit Card Fraud Detection Using Deep Neural 

Networks and LSTM Models, Expert Systems with Applications, Vol: 142, pp: 113–126, 

2019. 



1519th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

26. M. T. Şahin, A. Topal, Credit Card Fraud Detection Using Random Forest and Naive 

Bayes, UCI Machine Learning Repository, 2013. 

27. J. Jurgovsky, M. Faron, W. Kleiminger, Real-Time Credit Card Fraud Detection Using 

Recurrent Neural Networks, IEEE Access, Vol: 6, pp: 23057–23064, 2018. 

 

 



152 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

Evaluation of Biomechanical and Physiological Effects of 
Vehicle Vibrations on Pregnant Drivers 

Özden Taşdemir 1 , Muhammed Emin Kula2, Ömer Gündoğdu3 
1,2,3Department of Mechanical Engineering, University of Atatürk, Erzurum, Turkey  

oo.zdn.yldz@gmail.com1, mekula27@gmail.com2, omergun@atauni.edu.tr3  

 

Abstract  

The human body exhibits heightened sensitivity to vibrations, with varied reactions 
occurring among different population groups (e.g., pregnant women, children, elderly people, 
etc.). In this study, a biodynamic model of a pregnant woman, a highly sensitive user group, 
was developed, and the vibrations affecting the targeted body parts were analyzed. While 
extant research in this field has predominantly focused on the effects of vibration on the 
dynamic systems of non-pregnant individuals, studies examining the impact of vertical 
vibrations on pregnant women, particularly in the sitting position under driving conditions, 
are severely limited. In this context, the impact of speed humps on in-vehicle vibrations was 
examined for a pregnant female driver. The analysis is conducted with the driver's seat 
positioned on the half vehicle model, thereby considering the forces acting on the lumbar 
region of the expectant mother and the vertical accelerations to which the head and fetus are 
exposed. The system is modeled using spring, mass, and damper elements. The mathematical 
structure obtained is transferred to the state space and numerically analyzed in the MATLAB 
environment. The findings are presented in graphical form, and the dynamic effects on the 
pregnant driver and the fetus are analyzed in detail.  

Keywords: Biodynamic model; Pregnant woman; Vibration analysis. 
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1.INTRODUCTION 

Recently, the ride quality of automobiles has attracted a great deal of research interest, as it 
directly affects both user safety and comfort. As vehicle speed increases, a substantial 
interaction emerges between the road and the tires [1]. Consequently, the interaction results in 
the transmission of vibrations from the vehicle's chassis to the driver's body. These vibrations 
induce mechanical stresses on both the sensitive components of the vehicle and the driver [2]. 
Vibration transmitted through the vehicle seat causes the driver to be exposed to Whole Body 
Vibration (WBV). As a consequence of WBV exposure, a range of health concerns may 
emerge, along with diminished driver comfort [3]. It has been demonstrated that prolonged 
exposure to vibration can result in the onset of significant health complications, including but 
not limited to back pain, digestive system disorders, genitourinary problems, and hearing loss 
[4]. The most salient characteristics of Whole Body Vibration (WBV) are the magnitude of 
the frequency and the duration of exposure. Exposure to WBV at frequencies ranging from 
0.1 Hz to 0.5 Hz has been demonstrated to induce symptoms of motion sickness, while 
frequencies between 0.5 Hz and 80 Hz have been shown to exert adverse effects on health and 
comfort. The frequency range that exerts the most substantial influence on human health is 
situated between 5 and 9 Hz [5]. Pregnant women are one of the most sensitive groups in 
terms of the impact of these frequency values on health and comfort. 

The study of the impact of vibration on pregnant women is of vital importance, as it reveals 
different health risks for both mother and fetus [6]. Research has indicated that pregnant 
women exposed to WBV experience heightened stress levels, which can result in back pain 
and musculoskeletal disorders [6,7]. As pregnancy progresses, the body undergoes various 
physical changes, including an increase in body weight and a shift in the center of gravity. 
These changes render individuals more susceptible to discomfort and complications induced 
by vibrations [6]. Furthermore, it has been demonstrated that extended exposure of pregnant 
individuals to WBV during vehicular transportation can result in a range of grave pregnancy 
complications, particularly preterm delivery. A study by Adane et al. demonstrated that the 
risk of adverse pregnancy outcomes increased in pregnant women exposed to WBV in 
occupational settings [8]. These vibrations have been demonstrated to elicit physical 
discomfort in pregnant women and to exert a deleterious effect on the health of the fetus. 
Furthermore, given its association with psychological stress, the impact of vibration on 
pregnant women is multifaceted [9]. Research has demonstrated that vibration exerts a 
detrimental effect on fetal oxygenation and development by diminishing blood circulation 
[10]. These health problems, which are of a serious nature, have a significant impact on 
travelers and pregnant women in occupational settings. 

International guidelines thoroughly address the potential health effects of exposure to 
vibration in occupational environments [11]. In accordance with the provisions stipulated 
within the European Directive 2002/44/EC, the permissible levels of vibration to which 
workers in occupational settings, including pregnant women, can be exposed are delineated 
by occupational guidelines, in accordance with specified thresholds. These guidelines are 
rooted in empirical evidence that demonstrates the health risks associated with long-term 
exposure to vibration [12]. It has been demonstrated that pregnant women, in particular, often 
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lack sufficient awareness regarding the limit values of vibration levels that are considered safe 
for health during travel and the implications of exposure to such levels in occupational 
settings [13]. Consequently, in order to raise awareness of the potential risks of exposure to 
vibration during car travel, several studies have emphasized that expectant mothers should be 
informed about these hazards and encouraged to use appropriate health services [14,15]. A 
substantial body of research has been dedicated to elucidating these risks through the 
utilization of scientific data, with the objective of raising awareness regarding the potential 
challenges that may emerge. 

A special study was conducted focusing on the experiences of pregnant women exposed to 
vibration in the vehicle environment. The present study addressed the health effects of 
vibrations on individuals working in particularly demanding occupational conditions and 
relevant health guidelines [16]. As indicated in another study, there is an absence of literature 
addressing the vibration to which pregnant women are exposed during their daily 
transportation activities. A number of studies have examined the vibration levels to which 
pregnant women are exposed, particularly during commuting to work or while traveling with 
their families [8,9]. A similar study found that long-term vibration exposure can cause various 
health problems, including musculoskeletal disorders. These effects were associated with 
complications during pregnancy [6,7]. Qassem et al. employed MICRO-CAP II software to 
simulate the exposure of a 60-kilogram pregnant woman to horizontal and vertical vibrations. 
The results demonstrated that vibrations exert different effects on body parts, contingent on 
factors such as location, type, and gestational stage. Female drivers exhibited a heightened 
response compared to passengers [17]. Liang et al. proposed a half-vehicle model and a full-
vehicle model to study the effects on pregnant drivers or passengers exposed to vertical 
vibration due to road disturbances [18]. In their study, Yanıkören et al. constructed a model of 
a quarter car, incorporating both the seat and the human body. They sought to ascertain the 
optimal suspension parameters that would enhance driver comfort. This study focused on 
optimizing the suspension design, with particular consideration given to the vibrations of the 
human body [19]. 

The present study investigates the effects of vibrations induced by speed bumps on highways. 
The investigation utilizes a half vehicle model with a seat placed upon it, upon which a 
pregnant female driver is seated. The analysis evaluated the forces acting on the pregnant 
woman's lumbar region and the vertical accelerations experienced by the driver's head and the 
fetus. The physical model of a pregnant woman is represented using mechanical system 
elements (spring, mass, and damper). The model possesses eleven degrees of freedom and is 
mathematically expressed in terms of Newton-Euler and moment equations. The second-order 
linear ordinary differential equations with constant coefficients were transformed into state 
space form and solved by MATLAB software. The results are presented in graphical form, 
and the dynamic effects on the pregnant driver and the fetus are assessed in detail. 
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2.GENERAL PROPERTIES OF METHOD 

The model examined in this study is comprised of two components. The initial segment 
constitutes a lumped parameter model of a pregnant woman, incorporating 11 degrees of 
freedom, comprising mass, spring, and shock absorber [20]. As illustrated in Figure 1, the 
model displays a pregnant woman operating a vehicle, with the fetus depicted in meticulous 
detail. The model facilitates the simulation of the accelerations acting on both the driver and 
the fetus. Additionally, it facilitates the modeling of the lumbar region, enabling the 
identification of the forces acting upon it. This approach is particularly relevant in the context 
of predicting low back pain, a condition that is prevalent among pregnant women. 

 

Fig 1. Vibration pattern of a pregnant woman with fetus. 
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The second part of the model is a half-car model set up to reproduce the bump vibrations from 
the road [21]. As illustrated in Figure 2, the half-car model with the driver's seat exhibits five 
degrees of freedom.  

 

Fig 2. Half car model. 

Figure 3 illustrates the velocity bump profile employed in the study. The L in the figure 
indicates the curvature length, and the H denotes the curvature height. 

 

Fig 3. Speed bumper profile. 

 

The road profile is modeled as a half-sinusoidal curvature and given with 

𝑥𝑥𝑜𝑜𝑜𝑜 = 𝐻𝐻𝐵𝐵 sin(𝜔𝜔𝜔𝜔) 

𝑥𝑥𝑜𝑜𝑜𝑜 = 𝐻𝐻𝐵𝐵 sin(𝜔𝜔(𝑡𝑡 + 𝜏𝜏)) 

where ω is the circular frequency (rad/s) of the path and is expressed as 𝜋𝜋𝜋𝜋/𝐿𝐿. There is also a 
time difference between the front and rear wheels, calculated with 𝜏𝜏 = 𝐿𝐿𝑤𝑤/𝑣𝑣. 
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2.1. Mathematical Model 

The Newton-Euler formulation is used to derive the mathematical model of the vehicle and 
pregnant driver with fetus, whose physical model was previously described. Newton's second 
law of motion can be used since all masses, except the car mass, are stated as point masses as 

∑𝐹𝐹𝑧𝑧,𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑧̈𝑧𝑖𝑖           (1) 

and since the car is modeled as a rigid body 

∑𝑀𝑀𝐺𝐺 = 𝐼𝐼𝐺𝐺𝜃̈𝜃           (2) 

Therefore, 16 second-order linear ordinary differential equations with constant coefficients 
are the resulting mathematical expressions. State spaces are used to express these equations as 

𝐱̇𝐱 = 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁           (3) 

𝐲𝐲 = 𝐂𝐂𝐂𝐂 + 𝐃𝐃𝐃𝐃           (4) 

where, A, B, C, and D matrices represent the system, input, output, and feedforward matrices, 
respectively. The x, u, and y vectors denote the state, input, and output vectors, respectively. 

Since the main goal of the subject is to represent 16 second-order differential equations using 
32 first-order differential equations, matrix A is 32 by 32. 

The sinusoidal road profile is the input that throws the system off balance. As a result, when 
the front and rear wheels, respectively, go through a bumper at specific times, it can be 
regarded as two disruptions to the system. The input matrix B is a 32×2 matrix in this sense. 

3.APPLICATIONS 

The biodynamic model developed in this study provides a specific tool for analyzing the 
effects of surface disturbances, such as speed humps, on pregnant drivers, a vulnerable group 
of passengers. The configuration of the model can be utilized in the design of seats and 
suspension systems with the objective of enhancing driver comfort, particularly in the context 
of automotive engineering. Furthermore, it has the potential to contribute to the development 
of new human-centered safety systems that aim to limit vibration exposure for the purpose of 
enhancing in-vehicle ergonomics and promoting human health. The developed system can 
also be used as a simulation tool in clinical research, human health-oriented vehicle design, 
and road safety studies. One of the long-term application areas of this model is determining 
safe driving conditions for pregnant women. 

4.CONCLUSIONS 

The equations of motion were simulated numerically using the MATLAB programming 
language. The following investigation will examine the accelerations to which the pregnant 
woman's head is subjected. 

The maximum acceleration transmitted to the cranium of a pregnant woman when she passes 
through the speed breakers at 10.8 km/h is demonstrated in Figure 4. Figure 5 illustrates the 
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forces acting on the lumbar region, while Figure 6 demonstrates the maximum accelerations 
experienced by the fetus during the aforementioned speed transitions. 

 

 

Fig 4. Acceleration acting on the head of the pregnant driver (m/s2). 

 

 

Fig 5. Force acting on the pregnant driver's waist (N). 
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Fig 6. Acceleration to which the pregnant driver's fetus is exposed (m/s2). 

As illustrated in Figure 7, the graph displays the maximum accelerations transferred to the 
head region of both the fetus and the driver. Additionally, it showcases the variation in forces 
exerted on the driver's lower back, contingent on the vehicle's velocity. 

 

Fig 7. Maximum accelerations acting on the fetus and head at different speeds. 
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A close examination of the graphs reveals that acceleration and force values reach a 
maximum at approximately 22 km/h, after which they demonstrate a pronounced downward 
trend at higher speeds. 

This suggests that pregnant individuals operating motor vehicles should avoid velocities of 
approximately 22 km/h when traversing speed humps. To ensure optimal safety during 
crossing, it is recommended that speeds be maintained at low levels (e.g., 5 km/h) or at 
relatively high levels (e.g., 40-50 km/h). 

During the modeling process, the damping force is defined by the relation (𝐹𝐹𝑑𝑑 = 𝑐𝑐𝑐𝑐), where c 
is a constant. This relation demonstrates a direct proportionality between the damping force 
and the velocity. While this assertion is theoretically valid, it is not supported by empirical 
evidence. In practice, vehicle shock absorbers dampen more at high speeds. Consequently, 
despite the model's precision, the mechanical components of the vehicle may sustain damage 
when traversing speed breakers at high speeds. It is recommended that low-speed operation be 
maintained for two reasons. Firstly, this practice is intended to avert potential mechanical 
damage to the vehicle. Secondly, it is intended to minimize the adverse dynamic effects on the 
pregnant driver and fetus. 
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Abstract  

This paper introduces strongly modified ( ),h m − -convex functions, which 

generalization strongly modified h -convex functions, and proves some of their properties. 
Hermite–Hadamard type inequalities are obtained for these functions. Furthermore, the 
Riemann-Liouville integral is used to prove Hermite-Hadamard inequalities. 

Keywords: Convex function; Hermite-Hadamard inequality; Riemann-Liouville integral. 

1.INTRODUCTION 

Convex functions play an important role in many areas of mathematics. They are particularly 
significant in engineering and in the study of optimization problems. There are many 
generalizations of convex functions in the literature. For instance, strongly convexity is a key 
concept in this field of study. Various studies on strongly convexity can be found in the 
literature (see [2,4-6,9-10]). 

Definition 1. [7] Let J   be an interval and let :h J →  be a nonnegative function. Then 
the function  : 0,f r →  with 0r   is a modified h -convex function, if 

( )( ) ( ) ( ) ( )( ) ( )1 1 ,f tx t y h t f x h t f y+ −  + −  

holds  , 0,x y r  and  0,1t .  

 

Definiton 2. [8] Let I   be an interval and let c  be a positive number. A function 
:f I →  is called strongly convex function with modulus 0c  , if 

( )( ) ( ) ( ) ( ) ( )( )21 1 1 ,f tx t y tf x t f y ct t y x+ −  + − − − −  

for all ,x y I  and  0,1 .t  
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Definition 3. [2] A function  : 0,f r →  with 0r   is a strongly modified ( ),h m -convex 
function with modulus 0c  , if 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )21 1 1 ,f tx m t y h t f x m h t f y mct t y x+ −  + − − − −  

holds  , 0,x y r , 0c  ,  0,1m  and  0,1t .  

 

2.GENERAL PROPERTIES OF METHOD 

One of the best-known inequalities in the field of convex analysis is the Hermite–Hadamard 
inequality. First presented by J. Hadamard in 1893 as the Hadamard inequality. It was later 
widely used as the Hermite–Hadamard inequality. This inequality provides an estimate of the 
mean value of a convex function. [1-3].  

Theorem 1. [3] Let  : ,f a b →  be a convex function for a b . Then the following 
inequality holds: 

( ) ( ) ( )1 .
2 2

b

a

f a f ba bf f x dx
b a

++     −    

 

In [8], N. Merentes and K. Nikodem presented Hermite-Hadamard inequality via strongly 
convex function: 

Theorem 2. Let  : ,f a b →  be a strongly convex function with modulus 0c  , then  

( ) ( ) ( ) ( ) ( )2 21 .
2 12 2 6

b

a

f a f ba b c cf b a f x dx b a
b a

++  + −   − −  −    

 

Definition 4. [11] Let  ,f L a b . Then the Riemann-Liouville fractional integrals of order 
0   are described as: 

( ) ( ) ( ) ( )11 ,    
x

a
a

M f x x t f t dt x a


−

+ = − 
   

( ) ( ) ( ) ( )11 ,    ,
b

b
x

M f x t x f t dt x b


−

− = − 
   

where ( )  is the Gamma function.  
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( ) ( ) ( ) ( )11 ,    
x

a
a

M f x x t f t dt x a


−

+ = − 
   

( ) ( ) ( ) ( )11 ,    ,
b

b
x

M f x t x f t dt x b


−

− = − 
   

where ( )  is the Gamma function.  

3.APPLICATIONS 

In this section, we will present some properties of the strongly modified ( ),h m − -convex 
functions. Then we will prove some integral inequalities for this class of functions. 

 

Definition 5. Let J   be an interval, and let :h J →  be a nonnegative function. Then 
the function  : 0,f r →  is called strongly modified ( ),h m − -convex function with 
modulus 0c  , if 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )21 1 1 ,f tx m t y h t f x m h t f y mct t y x + −  + − − − −  

holds for all  , 0,x y r , ( )  2, 0,1m   and  0,1 .t  

 

Remark 1. a) If we set 1 = , we obtain the strongly modified ( ),h m -convex function (see 
[2]), 

b) If we set 1m = = , we obtain the strongly modified h -convex function. 

c) If we set 1 =  and 0c = , we obtain the modified ( ),h m -convex function. 

 

Proposition 1.  Let f  and g  are strongly modified (SM) ( ),h m − -convex function, then 

their sum f g+  is also SM- ( ),h m − -convex function. 

Proof. For  , 0,x y r , we get 

( ) ( )( ) ( )( ) ( )( )1 1 1 .f g tx m t y f tx m t y g tx m t y+ + − = + − + + −  

Since f  and g  are SM- ( ),h m − -convex function, 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )21 1 1f g tx m t y h t f x m h t f y mct t y x + + −  + − − − −  

( ) ( ) ( )( ) ( ) ( )( )21 1h t g x m h t g y mct t y x + + − − − −  

( )( )( ) ( )( )( )( ) ( )( )21 1 .h t f g x m h t f g y mct t y x = + + − + − − −  

 



166 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

Proposition 2. Let f  be a SM- ( ),h m − -convex function, then for scalar 0n  , nf  is also 

SM- ( ),h m − -convex function. 

Proof. For  , 0,x y r , we get 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )21 1 1nf tx m t y n h t f x m h t f y mct t y x + −  + − − − −  

( ) ( ) ( )( ) ( ) ( )( )21 1 .h t nf x m h t nf y mct t y x = + − − − −  

 

Proposition 3. Let 1h  and 2h  nonnegative function on J  and ( ) ( )2 1h t h t . If f  is SM-

( )2,h m − -convex function, then f  is also SM- ( )1,h m − -convex function. 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )22 21 1 1f tx m t y h t f x m h t f y mct t y x + −  + − − − −  

( ) ( ) ( )( ) ( ) ( )( )21 11 1 .h t f x m h t f y mct t y x  + − − − −  

 

Proposition 4. Let  : 0,if r →  are SM- ( ),h m − -convex function for i  and 
1

1
d

i
i

n
=

=

; then their linear combination ( ) ( )
1

d

i i
i

u n f u
=

 = ,  0,t r   is also SM- ( ),h m − -convex 

function. 

Proof. By choosing  , 0,x y r  with 0r   and ( )1u tx m t y= + − ; 

( )( ) ( )( )
1

1 1 .
d

i i
i

tx m t y n f tx m t y
=

 + − = + −  

Since if  is SM- ( ),h m − -convex function, 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )2
1 1 1

1 1 1
d d d

i i i i i
i i i

tx m t y h t n f x m h t n f y n mct t y x 

= = =

 + −  + − − − −    

( ) ( ) ( )( ) ( ) ( )( )21 1 .h t x m h t y mct t y x =  + −  − − −  
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Theorem 3. Let  : 0,f r →  with 0r   be a strongly modified ( ),h m − -convex function 

such that for  , 0,a b r , a b , then 

( ) ( )21 1 1 11
2 4 2 2

mb b

t
a a m

a mb mcf F h f x dx m h f x dx
mb a mb a 

+       +  + −      − −         

( ) ( ) ( )( ) ( ) ( )( )( )
1

2

0

1 1 1
2

h h t f a m h t f b mct t b a dt 


  + − − − − 
    

( )( ) ( ) ( ) ( )
21

2 2
0

11 1 1 .
2

a am h m h t f h t f b mct t b dt
m m

 


       + − − + − − −                 
   (1) 

where 

( ) ( )
21

0

1 .t
aF t b a t mb dt
m

  = − + − −      

Proof. For  , 0,x y r  with 0r  , we get 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )21 1 1f tx m t y h t f x m h t f y mct t y x + −  + − − − −      (2) 

If we put 1
2

t =  in (2), we get 

( ) ( ) ( )21 11
2 2 2 4

x my mcf h f x m h f y y x 

+        + − − −            
       (3) 

By choosing ( )1x ta m t b= + −  and ( )1 ay t tb
m

= − +  in (3), we obtain 

( )( ) ( )1 11 1 1
2 2 2

a mb af h f ta m t b m h f t tb
m 

+          + − + − − +                
 

( ) ( )
2

1 .
4
mc at b a t mb

m
  − − + − −    

          (4) 

By integrating (4) with respect to “ t ” from 0 to 1, we have 

( )( ) ( )
1 1 1

0 0 0

1 11 1 1 1
2 2 2

a mb af dt h f ta m t b dt m h f t tb dt
m 

+          + − + − − +                    

( ) ( )
21

0

1 .
4
mc at b a t mb dt

m
  − − + − −      
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( )( ) ( )
1 1

0 0

1 11 1 1 .
2 4 2 2t

a mb mc af F h f ta m t b dt m h f t tb dt
m 

+         +  + − + − − +                   (5) 

Put ( )1x ta m t b= + −  in the first integral of (5) and ( )1 ax t tb
m

= − +  in the second integral of 

(5), to get 

( ) ( )21 1 1 11 .
2 4 2 2

mb b

t
a a m

a mb mcf F h f x dx m h f x dx
mb a mb a 

+       +  + −      − −           (6) 

By comparing the right-hand side of (5) and (6), 

( ) ( )21 1 1 11
2 2

mb b

a a m

h f x dx m h f x dx
mb a mb a 

    + −    − −       

( )( ) ( )
1 1

0 0

1 11 1 1 .
2 2

ah f ta m t b dt m h f t tb dt
m 

      = + − + − − +               

Since f  is a SM- ( ),h m − -convex function, we have 

( ) ( )21 1 1 11
2 2

mb b

a a m

h f x dx m h f x dx
mb a mb a 

    + −    − −       

( ) ( ) ( )( ) ( ) ( )( )( )
1

2

0

1 1 1
2

h h t f a m h t f b mct t b a dt 


  + − − − − 
        (7) 

From (6) and (7), we obtain 

( ) ( )21 1 1 11
2 4 2 2

mb b

t
a a m

a mb mcf F h f x dx m h f x dx
mb a mb a 

+       +  + −      − −         

( ) ( ) ( )( ) ( ) ( )( )( )
1

2

0

1 1 1
2

h h t f a m h t f b mct t b a dt 


  + − − − − 
    

( )( ) ( ) ( ) ( )
21

2 2
0

11 1 1 .
2

a am h m h t f h t f b mct t b
m m

 


       + − − + − − −                 
  

 

Remark 2. a) If 1 =  in (1), we obtain Theorem 2 of [2]. 

b) If 1m = =  and ( )h t t=  in (1), we obtain Theorem 6 of [8]. 

c) If 1m = =  and 0c =  in (1), we obtain Theorem 3 of [7]. 
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( )( ) ( )
1 1

0 0

1 11 1 1 .
2 4 2 2t

a mb mc af F h f ta m t b dt m h f t tb dt
m 

+         +  + − + − − +                   (5) 

Put ( )1x ta m t b= + −  in the first integral of (5) and ( )1 ax t tb
m

= − +  in the second integral of 

(5), to get 

( ) ( )21 1 1 11 .
2 4 2 2

mb b

t
a a m

a mb mcf F h f x dx m h f x dx
mb a mb a 

+       +  + −      − −           (6) 

By comparing the right-hand side of (5) and (6), 

( ) ( )21 1 1 11
2 2

mb b

a a m

h f x dx m h f x dx
mb a mb a 

    + −    − −       

( )( ) ( )
1 1

0 0

1 11 1 1 .
2 2

ah f ta m t b dt m h f t tb dt
m 

      = + − + − − +               

Since f  is a SM- ( ),h m − -convex function, we have 

( ) ( )21 1 1 11
2 2

mb b

a a m

h f x dx m h f x dx
mb a mb a 

    + −    − −       

( ) ( ) ( )( ) ( ) ( )( )( )
1

2

0

1 1 1
2

h h t f a m h t f b mct t b a dt 


  + − − − − 
        (7) 

From (6) and (7), we obtain 

( ) ( )21 1 1 11
2 4 2 2

mb b

t
a a m

a mb mcf F h f x dx m h f x dx
mb a mb a 

+       +  + −      − −         

( ) ( ) ( )( ) ( ) ( )( )( )
1

2

0

1 1 1
2

h h t f a m h t f b mct t b a dt 


  + − − − − 
    

( )( ) ( ) ( ) ( )
21

2 2
0

11 1 1 .
2

a am h m h t f h t f b mct t b
m m

 


       + − − + − − −                 
  

 

Remark 2. a) If 1 =  in (1), we obtain Theorem 2 of [2]. 

b) If 1m = =  and ( )h t t=  in (1), we obtain Theorem 6 of [8]. 

c) If 1m = =  and 0c =  in (1), we obtain Theorem 3 of [7]. 

Corollary 1. a) If we take 0c =  and 1m =  in (1), we have 

( ) ( ) ( )( ) ( ) ( )
1

0

1 11 2 .
2 2

b

a

a bf f x dx h f b f a h t dt f a
b a




+       − − +    −       

b) If we take 1m =  and ( )h t t=  in (1), we have 

( ) ( )
2

1
2 12

b

a

c b aa bf f x dx
b a

−+  +   −    

( )
( )

( )
( )

( )22 1 2 1
.

2 1 2 1 6
f a f b c b a 

 

  

 

   − + + − −    + −
+ +

 

 

Theorem 4. Assume that  : 0,f r →  is a SM- ( ),h m − -convex function for  , 0,a b r  
with a b , then we have 

( )
( )

( ) 11 11
2 4 2 a b

a mb mc af F h M f mb m M f
mmb a

  
  

 +
+ −

 +  +       +  − +            −   
 

( ) ( ) ( )
1

2 1
2

0

1 1 11 1
2 2 2

ah f a m h f b m h f t h t dt
m

 
   −            − − − −                      

  

( ) 2
1 11
2 2

am h f b mh f
m 

       + − +              
          (8) 

where  

( ) ( )
21

1

0

1 .aF t t b a t mb dt
m




−   = − + − −      

 

Proof. Since f  is a SM- ( ),h m − -convex function, then 

( )( ) ( )( ) ( ) ( ) ( ) ( )( )21 1 1 .f t x mty h t f x mh t f y mct t y x − +  − + − − −      (9) 

By choosing 1
2

t = , we get 

( ) ( ) ( )21 11 .
2 2 2 4

x my mcf h f x mh f y y x 

+        − + − −            
       (10) 
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Assume that ( )1x ta m t b= + −  and ( )1 ay t tb
m

= − +  in (10) to get 

( )( ) ( )1 11 1 1
2 2 2

a mb af h f ta m t b mh f t tb
m 

+          − + − + − +                
 

( ) ( )
2

1 .
4
mc at b a t mb

m
  − − + − −    

          (11) 

Multiplying (11) with 1t −  and then integrating with respect to “ t ” from 0 to 1, we get 

( )( ) ( )
1 1 1

1 1 1

0 0 0

1 1 1 1 1
2 2 2

a mb af t dt h t f ta m t b dt mh t f t tb dt
m

  
 

− − −+          − + − + − +                  
 

( ) ( )
21

1

0

1 .
4
mc at t b a t mb dt

m
 −   − − + − −      

( )( )
1

1

0

1 11 1
2 4 2

a mb mcf F h t f ta m t b dt
 

−+     +  − + −         
 

( )
1

1

0

1 1 .
2

amh t f t tb dt
m




−   + − +   
               (12) 

Put ( )1x ta m t b= + −  in the first integral of (12) and ( )1 ax t tb
m

= − +  in the second integral 

of (12), to have 

( )11 11
2 4 2

mb

a

f xa mb mc mb xf F h dx
mb a mb a



 

−+   −     +  −       − −       
 

( )1
2 1 .

2

b

a m

f xmx am h dx
mb a mb a





−−   +    − −              (13) 

Since, 

( ) ( ) ( ) ( )1
mb

a
a

mb x f x dx M f mb −
+− =   

( ) ( ) ( )1 1 
b

b
a m

amx a f x dx m M f
m

  − −
−

 − =   
   
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Assume that ( )1x ta m t b= + −  and ( )1 ay t tb
m

= − +  in (10) to get 

( )( ) ( )1 11 1 1
2 2 2

a mb af h f ta m t b mh f t tb
m 

+          − + − + − +                
 

( ) ( )
2

1 .
4
mc at b a t mb

m
  − − + − −    

          (11) 

Multiplying (11) with 1t −  and then integrating with respect to “ t ” from 0 to 1, we get 

( )( ) ( )
1 1 1

1 1 1

0 0 0

1 1 1 1 1
2 2 2

a mb af t dt h t f ta m t b dt mh t f t tb dt
m

  
 

− − −+          − + − + − +                  
 

( ) ( )
21

1

0

1 .
4
mc at t b a t mb dt

m
 −   − − + − −      

( )( )
1

1

0

1 11 1
2 4 2

a mb mcf F h t f ta m t b dt
 

−+     +  − + −         
 

( )
1

1

0

1 1 .
2

amh t f t tb dt
m




−   + − +   
               (12) 

Put ( )1x ta m t b= + −  in the first integral of (12) and ( )1 ax t tb
m

= − +  in the second integral 

of (12), to have 

( )11 11
2 4 2

mb

a

f xa mb mc mb xf F h dx
mb a mb a



 

−+   −     +  −       − −       
 

( )1
2 1 .

2

b

a m

f xmx am h dx
mb a mb a





−−   +    − −              (13) 

Since, 

( ) ( ) ( ) ( )1
mb

a
a

mb x f x dx M f mb −
+− =   

( ) ( ) ( )1 1 
b

b
a m

amx a f x dx m M f
m

  − −
−

 − =   
   

 

Consequently (13) becomes, 

( )
( )

( ) 11 1 11 .
2 4 2 2a b

a mb mc af F h M f mb m h M f
mmb a

  
   

 +
+ −

 +  +         +  − +                −   
 (14) 

Also f  is SM- ( ),h m − -convex function, then 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )21 1 1 ,f ta m t b h t f a m h t f b mct t b a + −  + − − − −      (15) 

and  

( ) ( )( ) ( ) ( ) ( )
2

2 21 1 1 .a a af t tb m h t f h t f b mct t b
m m m

      − +  − + − − −     
     

    (16) 

Multiplying (15) with 11
2

h 

  −     
 and multiplying (16) with 1

2
h 
 
 
 

, then adding (15) and 

(16), we get 

( )( ) ( )1 11 1 1
2 2

ah f ta m t b mh f t tb
m 

      − + − + − +            
 

( ) ( ) ( )( ) ( ) ( )( )211 1 1
2

h h t f a m h t f b mct t b a 


     − + − − − −      
 

( )( ) ( ) ( ) ( )
2

2 2
2 2

1 1 1
2

a ah m h t f mh t f b m ct t b
m m

 


      + − + − − −      
       

 

( ) ( ) ( )( ) 2
2

1 11
2 2

ah t h f a mf b m h f
m


 

       = − − −              
 

( ) 2
1 11
2 2

am h f b mh f
m 

       + − +              
 

( )( ) ( )
2

2 2
2

1 11 1 1 .
2 2

ah mct t b a h m ct t b
m 

      − − − − − − −            
      (17) 

Multiplying (17) with 1t −  and then integrating with respect to “ t ” from 0 to 1, we have 

( )( ) ( )
1 1

1 1

0 0

1 11 1 1
2 2

ah t f ta m t b dt mh t f t tb dt
m

 
 

− −      − + − + − +                

( ) ( )( ) ( )
1

2 1
2

0

1 11
2 2

ah f a mf b m h f t h t dt
m

 
 

−        − − −              
  



172 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

( )
1

1
2

0

1 11
2 2

am h f b mh f t dt
m


 

−       + − +              
  

( ) ( ) ( )
21 1

2 2
2

0 0

1 11 1 1 .
2 2

ah mc b a t t dt h m c b t t dt
m

 
 

      − − − − − − −                  (18) 

Put ( )1x ta m t b= + −  in the first integral of (18) and ( )1 ax t tb
m

= − +  in the second integral 

of (18), we obtain 

( ) ( )1 1
21 11

2 2

mb b

a a m

f x f xmb x mx ah dx m h dx
mb a mb a mb a mb a

 

 

− −  − −       − +         − − − −            

( ) ( )( ) ( )
1

2 1
2

0

1 11
2 2

ah f a mf b m h f t h t dt
m

 
 

−        − − −              
  

( ) 2
1 11
2 2

m ah f b mh f
m 

       + − +              
 

( )

( )( )

2
2

2
1 11
2 2

1 2

amc h b a mh b
m 

 

      − − + −             −
+ +

. 

 

( )
( )

( ) 11 1 11
2 2a b

ah M f mb m h M f
mmb a

  
  

 +
+ −

 +        − +            −   
 

( ) ( )( ) ( )
1

2 1
2

0

1 11
2 2

ah f a mf b m h f t h t dt
m

 
  −        − − −              

  

( ) 2
1 11
2 2

am h f b mh f
m 

       + − +              
 

( )

( )( )

2
2

2
1 11
2 2

.
1 2

amc h b a mh b
m 

 

      − − + −             −
+ +

        (19) 

From (14) and (19), we obtain 

( )
( )

( ) 11 1 11
2 4 2 2a b

a mb mc af F h M f mb m h M f
mmb a

  
   

 +
+ −

 +  +         +  − +                −   
 



1739th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

( )
1

1
2

0

1 11
2 2

am h f b mh f t dt
m


 

−       + − +              
  

( ) ( ) ( )
21 1

2 2
2

0 0

1 11 1 1 .
2 2

ah mc b a t t dt h m c b t t dt
m

 
 

      − − − − − − −                  (18) 

Put ( )1x ta m t b= + −  in the first integral of (18) and ( )1 ax t tb
m

= − +  in the second integral 

of (18), we obtain 

( ) ( )1 1
21 11

2 2

mb b

a a m

f x f xmb x mx ah dx m h dx
mb a mb a mb a mb a

 

 

− −  − −       − +         − − − −            

( ) ( )( ) ( )
1

2 1
2

0

1 11
2 2

ah f a mf b m h f t h t dt
m

 
 

−        − − −              
  

( ) 2
1 11
2 2

m ah f b mh f
m 

       + − +              
 

( )

( )( )

2
2

2
1 11
2 2

1 2

amc h b a mh b
m 

 

      − − + −             −
+ +

. 

 

( )
( )

( ) 11 1 11
2 2a b

ah M f mb m h M f
mmb a

  
  

 +
+ −

 +        − +            −   
 

( ) ( )( ) ( )
1

2 1
2

0

1 11
2 2

ah f a mf b m h f t h t dt
m

 
  −        − − −              

  

( ) 2
1 11
2 2

am h f b mh f
m 

       + − +              
 

( )

( )( )

2
2

2
1 11
2 2

.
1 2

amc h b a mh b
m 

 

      − − + −             −
+ +

        (19) 

From (14) and (19), we obtain 

( )
( )

( ) 11 1 11
2 4 2 2a b

a mb mc af F h M f mb m h M f
mmb a

  
   

 +
+ −

 +  +         +  − +                −   
 

( ) ( )( ) ( )
1

2 1
2

0

1 11
2 2

ah f a mf b m h f t h t dt
m

 
  −        − − −              

  

( ) 2
1 11
2 2

am h f b mh f
m 

       + − +              
 

( )

( )( )

2
2

2
1 11
2 2

.
1 2

amc h b a mh b
m 

 

      − − + −             −
+ +

 

 

Remark 3. a) If 1 =  in (8), we obtain Theorem 3 of [2]. 

b) If 1m = =  and ( )h t t=  in (1), we obtain the result of strongly convex function. 

c) If 1m = =  and 0c =  in (1), we obtain the result of convex function. 

 

Corollary 2. a) If we take 1m =  and 0c = , we have 

( )
( )

( ) ( )1 1 11
2 2 2a b

a bf h M f b h M f a
b a

 
  


+ −

 +  +        − +            −   
 

( ) ( )( ) ( ) ( )
1

1

0

1 11
2 2

h f a f b h f a t h t dt 
  −      − − −          

  

( ) ( )1 11 .
2 2

h f b h f a 

    + − +        
 

b) If we take 1m =  and ( )h t t=  in (1), we have 

( ) ( )
( )( )

( )
( )

( ) ( )
2 2 2 1 1 11

2 4 1 2 2 2a b

c b aa bf M f b M f a
b a

 
  

   
   + −

− − +  ++     +  − +    + +   −  
 

( ) ( )( ) ( ) ( )
( )( )

2
1 11 .
2 2 1 2

c b a
f a f b f a 


   

−  + − − − −  + + +  
 

c) If we take 1m = =  in (1), we have 

( ) ( )
( )( )

( )
( )

( ) ( )
2 2 2 1 1 11

2 4 1 2 2 2a b

c b aa bf h M f b h M f a
b a

 


   
   + −

− − +  +  +       +  − +       + +     −   
 



174 9th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

( ) ( )( ) ( ) ( )( ) ( )
1

1

0

1 11
2 2

h f a f b h f a f b t h t dt −      − − − +          
  

( ) ( ) ( )
( )( )

2
1 11 .
2 2 1 2

c b a
h f b h f a


 

−    + − + −     + +    
 

d) If we take 1m = , ( )h t t=  and 0c =  in (1), we have 

( )
( )

( ) ( )1 1 11
2 2 2a b

a bf M f b M f a
b a

 
  


+ −

 ++      − +       −  
 

( ) ( )( ) ( )1 11
2 2

f a f b f a 


 

   − − −  +   
 

( ) ( )1 11 .
2 2

f b f a 
 + − + 
 

 

 

4.CONCLUSIONS 

In this paper, we presented the term of strongly modified ( ),h m − -convex function, which 
generalizes the term of a strongly convex function, and examined some of its properties. We 
then proved some integral inequalities that this class of functions. In future, it will be possible 
to derive several inequalities and describe new classes of convex functions using fractional 
operators on this class of convex functions. 
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Abstract 

The golden ratio is a special numerical proportion that is considered aesthetically 
pleasing and harmonious in both mathematics and art. The golden ratio, approximately equal 
to 1.618, appears widely in nature and everyday life, ranging from art to sculpture and graphic 
design. Throughout history, it has often been used in architecture to ensure aesthetic integrity 
and visual harmony. This research aims to examine the arches of historical bridges based on 
the concept of the golden ratio and evaluate these structures aesthetically. This study is 
significant in revealing the aesthetic balance in the design of historical bridges through the use 
of the golden ratio, thereby contributing to the preservation and evaluation of cultural 
heritage. The study was carried out on three historical bridges located in Diyarbakır, a city 
rich in historical and cultural heritage, hosting numerous civilizations throughout history. The 
presence of the golden ratio in the arches of the examined bridges was analyzed using span-
to-height ratios. Deviations from the golden ratio were calculated, and these values were 
evaluated in terms of the golden ratio-aesthetic relationship. The results showed that the 
design principles used in bridge construction could be related to the golden ratio and aesthetic 
criteria. Thus, the importance of examining the aesthetic values of historical structures from a 
mathematical perspective was highlighted. Additionally, this study makes a significant 
contribution to the field by combining the aesthetic aspect of historical structures with 
mathematical analysis. 

Keywords: Golden ratio; Aesthetic evaluation; Historic bridges. 
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1. INTRODUCTION 

Culture is the entirety of thought and artistic works unique to a society or community. 
Heritage is defined as something that one generation leaves to subsequent generations (TDK, 
2024). Underlying the characterization of culture as heritage is the transfer of values held by 
societies to future generations (Kurtar & Somuncu, 2013). From this perspective, we can define 
cultural heritage as the thoughts and artworks transmitted from previous societies or 
communities to the present day. Institutions such as the United Nations Educational, Scientific, 
and Cultural Organization (UNESCO) categorize cultural heritage as "tangible cultural 
heritage, intangible cultural heritage, underwater cultural heritage, and natural cultural 
heritage." Tangible cultural heritage is further divided into movable and immovable categories. 
Sculptures, manuscripts, coins, and archaeological artifacts constitute movable cultural 
heritage, while immovable cultural heritage includes historical urban fabrics, monuments, and 
archaeological sites (Kuşçuoğlu & Taş, 2017). 

Türkiye is a country that has hosted numerous civilizations throughout history, thus 
housing significant cultural heritage. Among the important tangible cultural heritages in 
Türkiye are historical bridges, categorized under immovable cultural heritage. Historical 
bridges reflect the architectural, engineering, and aesthetic understanding of different periods 
and constitute a vital part of the country's rich cultural heritage. Bridges are among the most 
significant structures in human history, constructed to overcome natural obstacles such as 
rivers, straits, and valleys, playing a crucial role in transportation. Bridges not only facilitate 
crossings but also contribute to shortening travel distances (Tanrıverdi & Gürel, 2019). 
Diyarbakır is one of the provinces in Türkiye that houses a significant portion of these historical 
bridges. Diyarbakır is a strategic intersection point linking the Mediterranean to the Persian 
Gulf and the Black Sea to Mesopotamia, as well as connecting to Azerbaijan and Iran via the 
Bitlis and Van Lake basins. Due to its location on important trade routes, the city has always 
been a center of commerce, maintaining this characteristic across different historical periods 
(Kutlay, 2012). Consequently, the city's cultural heritage preserves traces of numerous 
communities and civilizations, including the Assyrians, Urartians, Hittites, Persians, Romans, 
Byzantines, Umayyads, Abbasids, Artuqids, Seljuks, Aq Qoyunlu (aka. White Sheep 
Turkomans), Ottomans, and ultimately, the Republic of Türkiye (Kamuran, 2017; Kutlay, 
2012). Historical structures in the city hold significant value in terms of regional cultural and 
engineering heritage. Bridges in Diyarbakır are noteworthy both functionally and aesthetically. 
Among the historical bridges constructed during various periods in the city are the Dicle Bridge, 
Haburman Bridge, Halilivran Bridge, Sinek Bridge, Kara Köprü, Malabadi Bridge, and 
Ambarçayı Bridge. The locations of historical bridges in Diyarbakır are shown in Figure 1. 
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1. Ambarcay Bridge   2. Cungus Bridge   3. Devegecidi Bridge   4. Tigris (Dicle) Bridge   5. Haburman Bridge 
6. Halilviran Bridge   7. Black Bridge   8. Karasu Bridge   9. Malabadi Bridge   10. Sancak Bridge   
11. Sinek Bridge     

Figure 1. Locations of historical bridges in Diyarbakır (Dalkılıç and Halifeoğlu, 2009). 

It can be stated that these bridges are significant due not only to their functional roles in 
connecting different regions but also to their aesthetic values and engineering techniques. 
Among these, Dicle Bridge, Malabadi Bridge, and Haburman Bridge are particularly notable in 
terms of engineering techniques and aesthetic values, thus forming the focus of this research. 

The Dicle Bridge, named after the Tigris River over which it stands, is a significant 
structure that has become a symbol of the city with its size and architecture. Because it has ten 
arches, it is also known among the public as the “Ten-Arched Bridge.” The bridge was built 
using cut basalt stone (Ministry of Culture and Tourism [MoCT], 2024). According to the 
inscription on the bridge, one of the oldest in Diyarbakır, it was constructed in 1065 during the 
Marwanid period, although some claims suggest that it may belong to different periods as well 
(Yeşilbaş, 2007). Halifeoğlu and Dalkılıç (2009) also stated that the bridge had been destroyed 
and restored multiple times, and that three arches with wider spans were built in place of four 
arches that collapsed in the middle. They suggested that the original bridge may have had eleven 
arches. A visual of the Dicle Bridge is provided in Figure 2. 

 
Figure 2. Dicle Bridge (MoCT, 2024) 
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Figure 2. Dicle Bridge (MoCT, 2024) 

Located 104 km from the city center over the Batman Creek, which flows into the Tigris, 
the Malabadi Bridge was constructed in 1147–48 by Timurtaş, the ruler of the Mardin Artuqids 
(Ilgazids), according to the inscription on it (Beysanoğlu, 1990). The Malabadi Bridge extends 
in a broken east-west axis, is steeply arched, and consists of a large central arch and four 
adjacent smaller arches, making five in total (Kutlay, 2012). With its pointed main arch 
spanning 40.86 meters, it is the stone arch bridge with the largest span in the world that has 
survived to the present day (Silvan District Governorship, 2024). With its internal rooms, the 
structure served not only the purpose of crossing the river but also provided accommodation 
and resting spaces for travelers using the road (Halifeoğlu, Toprak & Kavak, 2011). A visual 
of the Malabadi Bridge is presented in Figure 3. 

 
Figure 3. Malabadi Bridge (MoCT, 2024) 

The Haburman Bridge is located on the Sinek Creek, which flows into the Euphrates, 
along the old Çermik-Siverek road. According to the inscription on the bridge, it was built by 
the Artuqids in 1179 (Halifeoğlu, Toprak & Kavak, 2011). The bridge consists of a total of 
three arches, with a large pointed central arch and two smaller relieving arches on the sides. A 
visual of the Haburman Bridge is presented in Figure 4. 

 
Figure 4. Haburman Bridge (MoCT, 2024) 

These bridges are notable in the region not only for their functionality but also for their 
aesthetic and engineering qualities. Throughout history, the golden ratio has been used as an 
important element to ensure aesthetic integrity in the construction of many structures (Akın, 
2021). The golden ratio is a mathematical proportion, approximately equal to 1.618, obtained 
by dividing a line such that the ratio of the larger part to the smaller part is equal to the ratio of 
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the whole line to the larger part (Livio, 2002; as cited in Yılmaz, 2017). This ratio is considered 
the mathematical representation of aesthetics and balance in natural entities (Akın, 2021). 
Indeed, the existence of this aesthetic proportion has been observed in many architectural 
structures. The Egyptian pyramids are among the first architectural structures where the golden 
ratio was predominantly used (Hastürk, 2014). Other examples where the golden ratio has been 
identified include the Parthenon, considered the greatest work of Greek architecture; the 
Florence Cathedral in Italy; the Notre Dame Cathedral, a prime example of French Gothic 
architecture; the Eiffel Tower, the symbol of France; and the Taj Mahal, completed in the 1650s 
in India (Yılmaz, 2017). This ratio has also been identified in some historical structures in 
Türkiye. It is frequently observed in Seljuk-era structures, especially in portal designs; in the 
plan and facade layouts of Ottoman-era buildings; and in the architectural works of Mimar 
Sinan (Akın, 2021). Yılmaz (2017) identified the use of the golden ratio in three Seljuk-era 
madrasas in Konya in his study. In another study, Akın (2021) found that the golden ratio was 
used in Ottoman-era mosques in Diyarbakır. Other verified examples of the golden ratio include 
the Divriği Complex, Sultan Han, Sivas Gök Medrese, Istanbul Davut Pasha Mosque, and 
Konya Sahip Ata Mosque (Gürsoy, 2018). 

Whether the golden ratio, as a principle providing aesthetic and mathematical harmony, 
is also found in historical bridges built with engineering skills—not just monumental and 
religious buildings—has been a subject of curiosity. Historical bridges in Diyarbakır such as 
the Dicle Bridge, Malabadi Bridge, and Haburman Bridge reflect the engineering and 
architectural understanding of different periods and serve as significant examples for exploring 
the relationship between aesthetic order and the golden ratio in these structures. The aim of this 
study is to examine the span-to-height ratios of the arches of three historical bridges in 
Diyarbakır based on the concept of the golden ratio and to evaluate these structures 
aesthetically. The research aims to analyze how closely the obtained ratios align with the golden 
ratio and to reveal the relationship between aesthetic and mathematical harmony in the 
architectural designs of these bridges. When reviewing studies in the literature that examine the 
golden ratio-aesthetic relationship in architectural facades (Akın, 2021; Akın & Aykal, 2022; 
Salık, 2024; Selçuk, Sorguç & Akan, 2009; Yılmaz, 2017), it is seen that most of the research 
focuses on structures such as mosques, madrasas, and mausoleums, and no study has been found 
related to historical bridges. In this respect, this study is expected to fill that gap in the literature 
by focusing on the aesthetic and mathematical analysis of historical bridges in Diyarbakır. 
Demonstrating the aesthetic balances in the designs of historical bridges through the use of the 
golden ratio is important for the preservation and evaluation of cultural heritage. Evaluating 
these bridges in terms of engineering and aesthetics will not only help us understand past 
architectural and aesthetic perspectives but may also serve as an inspiration for modern 
architectural designs. 

2. GENERAL PROPERTIES OF METHOD 

This research was conducted using a quantitative analysis method due to its focus on 
examining the golden ratio—an aesthetic proportion—in historical bridges located in 
Diyarbakır. The study is based on a descriptive approach and a scanning model that incorporates 
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This research was conducted using a quantitative analysis method due to its focus on 
examining the golden ratio—an aesthetic proportion—in historical bridges located in 
Diyarbakır. The study is based on a descriptive approach and a scanning model that incorporates 

a mathematical analysis process. By examining the architectural characteristics of the historical 
bridges, the study aimed to determine their relationship with the golden ratio. This model seeks 
to present the existing situation as it is and interpret it using an analytical approach. 

The research was carried out on three historical bridges located within the borders of 
Diyarbakır Province. These bridges are the Dicle Bridge, known among the public as the “Ten-
Arched Bridge,” the Malabadi Bridge, and the Haburman Bridge. The selected bridges 
represent different historical periods of Diyarbakır and are architecturally prominent structures 
of the city. 

To conduct the related studies, historical bridges in Diyarbakır were first examined, and 
then consultations were held with a field expert faculty member at the Faculty of Architecture 
and Engineering at Dicle University. As a result, these three bridges were determined as the 
study sites. A detailed investigation was conducted on the selected bridges. The numerical data 
related to these bridges were obtained from the 9th Regional Directorate of Highways in 
Diyarbakır on October 18, 2024. In this context, the presence of the golden ratio in the arches 
of the specified bridges was examined through span-to-height ratios. The process was supported 
by a literature review and photographs. 

The study began with the assumption that the golden ratio is one of the important aesthetic 
factors in historical bridges. Based on this assumption, the span-to-height ratios of the arches 
of historical bridges were calculated, and their deviations from the golden ratio were 
determined. The amounts of deviation were identified using the absolute difference method, 
and the results were visualized with tables for each bridge. These analyses provided a basis for 
interpreting the aesthetic and mathematical features of the bridges. Thus, by identifying how 
closely these ratios approach the golden ratio value of 1.618 and determining the deviations, 
golden ratio-aesthetic evaluations were made for each arch. Ideally, if a ratio is close to 1.618, 
it indicates that the structure uses the golden ratio. 

3. APPLICATIONS 

The historical bridges examined within the scope of this study were evaluated based on 
their arches. These evaluations were made using the span-to-height ratios of the arches. The 
data for the Dicle Bridge (Ten-Arched Bridge), one of the bridges examined in the study, are 
presented in Table 1. 

Table 1. Data for Dicle Bridge 
Arch Span Height Ratio Deviation Amount 
Arch 1 8.48 4.98 1.703 0.085 
Arch 2 8.04 5.01 1.605 0.013 
Arch 3 13.84 7.97 1.737 0.119 
Arch 4 11.97 6.97 1.717 0.099 
Arch 5 13.92 7.76 1.794 0.176 
Arch 6 8.38 4.77 1.757 0.139 
Arch 7 8.73 4.74 1.842 0.224 
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Arch 8 8.45 5.53 1.528 0.090 
Arch 9 8.59 4.93 1.742 0.124 
Arch 10 8.15 4.92 1.657 0.039 

Table 1 shows the span-to-height ratios of the arches of the Dicle Bridge. It can be seen 
that arches 1, 2, 6, 7, 8, 9, and 10 are of similar dimensions, while arches 3, 4, and 5 have 
noticeably wider spans. As observed in the table, the span-to-height ratios of the arches range 
between 1.528 and 1.842. The lowest deviation amount was found in arch 2 (0.013), while the 
highest deviation was in arch 7 (0.224). To better illustrate the deviations from the golden ratio, 
these data are shown in the bar graph in Figure 5. 

 
Figure 5. Span-to-Height Ratios and Golden Ratio Deviations of Dicle Bridge 

The arches of the Dicle Bridge generally exhibit a close alignment with the golden 
ratio. The overall proximity of the arches to the golden ratio suggests that the arches were not 
designed randomly, that the golden ratio may have been used deliberately, and that aesthetic 
concerns were considered. The data for the Malabadi Bridge, another bridge examined in this 
study, are presented in Table 2. 

Table 2. Data for Malabadi Bridge 
Arch Span Height Ratio Deviation Amount 
Arch 1 40.85 23.78 1.718 0.100 
Arch 2 4.28 6.81 1.591 0.027 
Arch 3 5.67 10.18 1.795 0.177 
Arch 4 5.66 7.66 1.353 0.265 

The Malabadi Bridge consists of a main arch (Arch 1) and four smaller arches. The fifth 
arch was closed in 1955 with the construction of a reinforced concrete bridge, so data for this 
arch were not included in the analysis. In the smaller arches (2, 3, and 4), height exceeds span, 
so height-to-span ratios were calculated instead of span-to-height ratios. As shown in Table 2, 
the ratios range from 1.353 to 1.795. The lowest deviation amount was found in arch 2 (0.027), 
and the highest in arch 4 (0.265). The deviation of the main arch from the golden ratio was 
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arch was closed in 1955 with the construction of a reinforced concrete bridge, so data for this 
arch were not included in the analysis. In the smaller arches (2, 3, and 4), height exceeds span, 
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determined to be 0.1. To better illustrate the deviations from the golden ratio, these values are 
shown in the bar graph in Figure 6. 

 
Figure 6. Span-to-Height Ratios and Golden Ratio Deviations of Malabadi Bridge 

As shown in Figure 6, the arches of the Malabadi Bridge generally exhibit proximity to 
the golden ratio. Arch 2 is the closest to the golden ratio. While arches 1 and 2 reflect the 
aesthetic effect of the golden ratio, arches 3 and 4 show greater deviation. Therefore, the 
significant deviations in some arches make it difficult to determine whether these proportions 
were used intentionally or resulted from functional requirements. However, it can be said that 
while aesthetic aspects were prioritized in the main and second arches, engineering 
requirements had more influence on the design of the other two. The data for the Haburman 
Bridge, another bridge examined in the study, are presented in Table 3. 

Table 3. Data for Haburman Bridge 
Arch Span Height Ratio Deviation Amount 
Central Arch 19.00 11.20 1.696 0.078 
East Arch 5.30 4.50 1.778 0.160 
West Arch 7.10 5.50 1.291 0.327 

The Haburman Bridge consists of a central arch, referred to as the main arch, and two 
smaller arches. As seen in Table 3, the lowest deviation amount is in the central arch (0.078). 
The other two arches show higher deviations compared to the central arch. In particular, the 
west arch deviates significantly from the golden ratio. To better illustrate the deviations from 
the golden ratio, these data are shown in the bar graph in Figure 7. 
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Figure 7. Span-to-Height Ratios and Golden Ratio Deviations of Haburman Bridge 

As also shown in Figure 3, the central arch of the Haburman Bridge, which can be 
considered the main arch, is close to the golden ratio. However, the west arch exhibits a higher 
deviation, and its span-to-height ratio diverges from the golden ratio. This suggests that while 
overall attention was paid to aesthetics in the bridge, in the west arch in particular, engineering 
requirements took precedence over aesthetics. 

4. CONCLUSIONS 

In this study, based on the idea that the golden ratio can be an effective universal aesthetic 
criterion in architectural structures, three historical bridges located in Diyarbakır were 
examined in the context of the compatibility of their arch structures with the golden ratio and 
their aesthetic relationship. The span-to-height ratios of the arches in the historical bridges were 
calculated, and the deviations from the golden ratio were determined for each arch individually. 
In this way, it was aimed to better understand the relationship between the arches and the golden 
ratio and their aesthetic harmony. 

In the Dicle Bridge, it was observed that seven of the arches have similar span sizes, while 
three arches are significantly wider. Halifeoğlu et al. (2009) stated that these three spans were 
constructed in place of four arches of similar size that previously existed but had collapsed, and 
that the original bridge possibly had eleven arches. Although the arches of the Dicle Bridge 
display different ratios, they generally exhibit a balanced structure both functionally and 
aesthetically due to their closeness to the golden ratio. Proximity to the golden ratio can be 
considered an indicator of aesthetic harmony in historical structures. This suggests that the 
bridge should be evaluated not only from an engineering perspective but also as a product of 
artistic design. 

The arches of the Malabadi and Haburman Bridges show variation in their closeness to 
the golden ratio. In the Malabadi Bridge, arches 1 and 2 present strong aesthetic value, whereas 
arches 3 and especially 4 are more distant from the golden ratio. In the Haburman Bridge, the 
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ratio and their aesthetic harmony. 

In the Dicle Bridge, it was observed that seven of the arches have similar span sizes, while 
three arches are significantly wider. Halifeoğlu et al. (2009) stated that these three spans were 
constructed in place of four arches of similar size that previously existed but had collapsed, and 
that the original bridge possibly had eleven arches. Although the arches of the Dicle Bridge 
display different ratios, they generally exhibit a balanced structure both functionally and 
aesthetically due to their closeness to the golden ratio. Proximity to the golden ratio can be 
considered an indicator of aesthetic harmony in historical structures. This suggests that the 
bridge should be evaluated not only from an engineering perspective but also as a product of 
artistic design. 

The arches of the Malabadi and Haburman Bridges show variation in their closeness to 
the golden ratio. In the Malabadi Bridge, arches 1 and 2 present strong aesthetic value, whereas 
arches 3 and especially 4 are more distant from the golden ratio. In the Haburman Bridge, the 

central arch has a value close to the golden ratio, but the third arch deviates more significantly. 
This indicates that both aesthetics and functionality were considered in the design of these 
bridges. While general attention was paid to aesthetic harmony, it appears that in the smaller 
arches—compared to the main arches—engineering requirements were prioritized over 
aesthetics. Thus, it can be said that each arch plays a different role in terms of aesthetic harmony 
and engineering necessities. 

As a result, it was found that the span-to-height ratios of the arches in the examined 
bridges generally show values close to the golden ratio. While aesthetic concerns are thought 
to have influenced all the arches in the Dicle Bridge, in the Malabadi and Haburman Bridges, 
the main arches stand out more in terms of aesthetics, and in some of the smaller arches, 
engineering necessities appear to be more dominant. These findings suggest that the golden 
ratio may have been used consciously or intuitively as an aesthetic design element in the 
examined bridges. Therefore, although the influence of the golden ratio on the aesthetic 
structure is generally observable in these bridges, whether this was a conscious design decision 
or a natural result of functional requirements remains open to discussion. Nevertheless, it can 
be concluded that the relationship between the golden ratio and aesthetics has had a significant 
impact on these historical structures. 

Based on the results of the study, the following recommendations are proposed: 

This study is limited to three historical bridges in Diyarbakır. The presence of a golden 
ratio–aesthetic relationship in historical bridges can also be examined in bridges built in 
different periods or located in different provinces. 

In this research, the presence of the golden ratio in historical bridges was determined 
through the span-to-height ratio of the arches. The presence of the golden ratio and its aesthetic 
relationship can also be examined using different methods, such as the solid-void ratio of 
facades. 

The presence of the golden ratio in the design of the Dicle, Malabadi, and Haburman 
Bridges demonstrates that aesthetic factors were considered during their construction processes. 
Accordingly, it is recommended that aesthetic concerns be considered alongside engineering 
requirements during the restoration and preservation of historical bridges. 

The historical use of the golden ratio as an aesthetic element can also serve as a valuable 
guide for modern engineering and architectural design. Therefore, taking aesthetic principles 
and the golden ratio into account in today’s bridge projects may result in more harmonious 
structures in both functional and aesthetic terms. 

The fact that engineering requirements took precedence in some arches indicates a 
compromise on aesthetics. In this context, a multidisciplinary approach can be adopted during 
the design phase of new bridges to balance engineering and aesthetic considerations. 
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Abstract  

One of the most essential goals of mathematics instruction is to help students develop 
and apply statistical literacy skills. However, several research studies indicate that 
mathematics teachers and students struggle with statistics when it comes to teaching and 
learning. Developing approaches is essential to overcome these struggles and increase 
statistical literacy. This article presents a review of the literature on statistical literacy among 
middle school students and provides an informative guide to statistics education researchers 
and statistics/mathematics teachers alike. This systematic review, using the PRISMA 
framework, analyses 20 research articles to provide an overview of studies on statistical 
literacy among middle school students. It examines six key themes in detail: year of the study, 
research method, grade level, data collection tools, data analysis method, interdisciplinary 
concept in statistical literacy, and methods and strategies used in developing it. Furthermore, 
this research primarily concentrates on studies that emphasise interdisciplinary approaches. 
The main outcome of this review is to lay the groundwork for an effort to create an 
interdisciplinary educational program. According to the results of the present review, we 
conclude that improvements in data literacy and different methods have been developed to 
increase middle school students' statistical literacy. 

Keywords: interdisciplinary, mathematics, PRISMA, teaching statistics 
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Abstract  

One of the most essential goals of mathematics instruction is to help students develop 
and apply statistical literacy skills. However, several research studies indicate that 
mathematics teachers and students struggle with statistics when it comes to teaching and 
learning. Developing approaches is essential to overcome these struggles and increase 
statistical literacy. This article presents a review of the literature on statistical literacy among 
middle school students and provides an informative guide to statistics education researchers 
and statistics/mathematics teachers alike. This systematic review, using the PRISMA 
framework, analyses 20 research articles to provide an overview of studies on statistical 
literacy among middle school students. It examines six key themes in detail: year of the study, 
research method, grade level, data collection tools, data analysis method, interdisciplinary 
concept in statistical literacy, and methods and strategies used in developing it. Furthermore, 
this research primarily concentrates on studies that emphasise interdisciplinary approaches. 
The main outcome of this review is to lay the groundwork for an effort to create an 
interdisciplinary educational program. According to the results of the present review, we 
conclude that improvements in data literacy and different methods have been developed to 
increase middle school students' statistical literacy. 
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1.INTRODUCTION 

The concept of statistical literacy, which began to develop quite small and technically in the 
late 1970s, was expanded by Statistical Association (ASA) in the late 1990s [1]. The concept 
of statistical literacy was originally used to describe the information people need to 
technically understand statistics and make decisions based on analysis of data. This aspect of 
the concept was measured using statistics in daily life. However, only the technical aspects of 
the concept were considered with these measurements. Afterward, the broad definition of the 
concept was expressed as “statistical literacy is the ability to understand and critically 
evaluate statistical results that permeate our daily lives – coupled with the ability to  
appreciate  the  contributions  that  statistical  thinking  can  make in public and private, 
professional and personal decisions” by ASA. 

In recent years, statistical literacy has grown in importance. Statistics, which we encounter 
even in the most ordinary issues in daily life, are one of the most feared and regarded as too 
difficult to comprehend by societies [2]. One of the primary reasons for this could be the 
simple and direct transmission of statistical information without adequate communication 
with the students. Students cannot understand and interpret statistical knowledge in this 
situation because the information is given directly to them, and they are not permitted to 
interpret that knowledge [2]. Changing students' attitudes toward statistics and increasing their 
statistical literacy; practices involving statistics concepts and processes. 

The capacity to critically assess and apply statistics in daily life is known as statistical 
literacy. These skills include arranging data, making and displaying tables, and analyzing 
various data visualizations [3]. Data literacy is defined in the paper "Beyond Data Literacy," 
which was released in September 2015, as the capacity to read data, work with data, analyze 
data, and discuss data. According to this paper, data literacy interacts with statistical literacy 
and consists of a combination of the technical, critical, mathematical, and conceptual skills 
that serve as the foundation for statistical literacy. 

The recognition of the importance of statistics in daily life, as well as the relationship between 
statistical literacy, has focused attention on mathematics curricula and program developers [4] 
[5][6]. Statistics are taught in schools for three important reasons: (1) Statistics is useful in 
everyday life, (2) it is a tool used in other disciplines, and (3) it is essential in the development 
of critical thinking [5]. For these reasons, some communities frequently emphasize statistics' 
specific role in mathematics curricula and make special recommendations on statistical 
education [7] [8]. 

Six important recommendations are made for school statistics courses in the Guidelines for 
Assessment and Instruction in Statistics Education (GAISE) [9] study. The development of 
statistical thinking and statistical literacy should be emphasized more in the classroom, real 
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data should be used, conceptual understanding should be valued above procedural knowledge, 
active learning techniques should be used, technology should be used to develop data analysis 
and conceptual understanding, and assessments that measure and improve student learning 
should be combined [10]. Only the first of the six suggestions from the original GAISE [11]. 
study have been changed, adding two new emphases in the GAISE II report [12]. These 
skills—statistics, problem-solving, and decision-making—should be taught to students as part 
of the research process, and they should have opportunities to practice multivariate thinking. 
The GAISE II [12] report retains the characteristics of the GAISE I report and includes the 
new skills needed to make sense of data today.  

In consistency with the GAISE report, interdisciplinary interaction is emphasized as one of 
the important elements in the teaching process in mathematics curricula designed and used by 
many countries, including Turkey [13]. Interdisciplinary connections stand for a variety of 
intelligences and approaches to offering various solutions to the world's complicated 
problems. By combining several subjects, such as art, math, science, and social studies, it 
improves students' abstract thinking, cognitive growth, problem-solving abilities, and 
creativity [14]. Students may see and learn about the connections between each discipline and 
the real world thanks to the interdisciplinary approach. Additionally, it enables individuals to 
acquire the knowledge and abilities required to adapt to cultures that are continually 
undergoing cultural, economic, and technological change. These abilities enable students to 
think critically and solve problems creatively [15]. Thus, curriculum documents in all 
disciplines refer to some competencies that students will need at the national and international 
levels in their personal, social, academic, and work lives [13]. Furthermore, research studies 
in various disciplines revealed an increase in students' academic achievement as a result of 
interdisciplinary interactions in teaching [16]. 

However, it is difficult to go beyond transferring these learning outcomes to students with a 
teaching approach that focuses solely on the learning outcomes defined in the mathematics 
curriculum. Concrete examples of teaching materials relating to the use of interdisciplinary 
connections are required instead. Interdisciplinary connections and connections to daily life to 
statistics can be built in this context by relating statistics content to content in other disciplines 
such as social studies, science, technology, physical education, and arts. The interdisciplinary 
analysis of statistics concepts will connect two seemingly independent disciplines while also 
increasing the time allocated for teaching the topic, improving students' daily lives and 
mathematical connections. Tasks that are designed to promote students' learning of statistics 
concepts related to real-life situations and integrated with concepts to be learned in other 
disciplines. 

A. The Rationale for the study 

Students must define, organize, and interpret numerical data obtained in various contexts 
within statistics [10]. The GAISE identifies statistics teaching, the development of statistical 
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many countries, including Turkey [13]. Interdisciplinary connections stand for a variety of 
intelligences and approaches to offering various solutions to the world's complicated 
problems. By combining several subjects, such as art, math, science, and social studies, it 
improves students' abstract thinking, cognitive growth, problem-solving abilities, and 
creativity [14]. Students may see and learn about the connections between each discipline and 
the real world thanks to the interdisciplinary approach. Additionally, it enables individuals to 
acquire the knowledge and abilities required to adapt to cultures that are continually 
undergoing cultural, economic, and technological change. These abilities enable students to 
think critically and solve problems creatively [15]. Thus, curriculum documents in all 
disciplines refer to some competencies that students will need at the national and international 
levels in their personal, social, academic, and work lives [13]. Furthermore, research studies 
in various disciplines revealed an increase in students' academic achievement as a result of 
interdisciplinary interactions in teaching [16]. 

However, it is difficult to go beyond transferring these learning outcomes to students with a 
teaching approach that focuses solely on the learning outcomes defined in the mathematics 
curriculum. Concrete examples of teaching materials relating to the use of interdisciplinary 
connections are required instead. Interdisciplinary connections and connections to daily life to 
statistics can be built in this context by relating statistics content to content in other disciplines 
such as social studies, science, technology, physical education, and arts. The interdisciplinary 
analysis of statistics concepts will connect two seemingly independent disciplines while also 
increasing the time allocated for teaching the topic, improving students' daily lives and 
mathematical connections. Tasks that are designed to promote students' learning of statistics 
concepts related to real-life situations and integrated with concepts to be learned in other 
disciplines. 

A. The Rationale for the study 

Students must define, organize, and interpret numerical data obtained in various contexts 
within statistics [10]. The GAISE identifies statistics teaching, the development of statistical 

thinking, as well as the emphasis on statistical literacy, the use of active learning methods 
within the classroom, the encouragement of technology use, the analysis of student learning, 
the availability of conceptual understanding rather than operational knowledge, and the use of 
real data as methods to develop statistical literacy [10]. Interdisciplinary teaching can be used 
as a foundation for providing context for students while dealing with real data and having 
conceptual understanding. Interdisciplinary teaching is a method of assisting students in 
combining and integrating knowledge from various fields, as well as enabling students to 
think by synthesizing and analyzing them through concepts [17]. 

In recent years, the concept of statistical literacy has expanded beyond its traditional 
boundaries to include interdisciplinary perspectives and a variety of educational approaches. 
This expansion has led to increased research interest in how statistical literacy is developed, 
particularly at the secondary school level, where basic skills are developed. In this context, it 
is critical to examine the literature for research-based examples of interdisciplinary 
connections, identify activities, and identify effective methods for developing statistical 
literacy. In conclusion, this study formulates five primary research questions that 
systematically examine various dimensions of statistical literacy development among 
secondary school students. Tracking the publication years of studies on statistical literacy 
provides valuable insights into the evolution of research interest over time. By mapping trends 
in publication frequency, this study aims to identify periods of increased academic focus and 
potential gaps where further research is needed. Understanding these trends can help 
contextualize the evolution of statistical literacy research and reveal how changes in 
educational policy, technological advances, and pedagogical innovations have impacted the 
field. 

RQ1: What years have manuscripts in this field been published? 

Methodological approaches in statistical literacy research are essential for uncovering 
effective teaching practices and understanding the cognitive and pedagogical mechanisms that 
shape student learning. This question seeks to examine the variety of sample types, ranging 
from individual case studies to large-scale experimental designs, and the variety of data 
collection tools used, such as surveys, interviews, and performance assessments. In addition, 
methods such as qualitative and quantitative research and mixed methods approaches help 
identify key factors that influence learning outcomes and the relationships between different 
learning methods. 

RQ2: What sample types, data collection tools and data analysis methods, were used to 
identify the most effective practices for improving statistical literacy in middle school 
students? 

Developing statistical literacy in secondary school students presents several pedagogical and 
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conceptual challenges. This research question aims to explore challenges identified in the 
literature, including students’ misconceptions about statistical concepts, limitations in 
curriculum design, and varying effectiveness of teaching methods. Additionally, the study 
examines the role of interdisciplinary connections in overcoming these challenges and 
evaluates how integrating statistics with subjects such as science, social studies, and 
economics can increase student understanding and engagement. 

Q3: What are the main issues identified in the literature review concerning the development 
of statistical literacy in middle school students and the use of interdisciplinary connections? 

Interdisciplinary approaches offer a promising avenue for improving statistical literacy by 
addressing statistical concepts in real-world contexts. This research question aims to 
investigate specific strategies used to integrate statistics across disciplines, such as project-
based learning, inquiry-based activities, and technology-enhanced instruction. By identifying 
successful interdisciplinary approaches, the study provides a framework for developing 
curricula that integrate statistical literacy with broader educational goals. 

Q4: What methods have been used to support the statistical literacy of middle school students 
with interdisciplinary approaches? 

Effective pedagogical strategies are essential to promoting statistical literacy and enabling 
students to develop the critical thinking skills necessary for data-driven decision making. This 
research question synthesizes evidence on instructional methods including active learning 
techniques, real and easily accessible data in classroom tasks, and assessment-focused 
feedback mechanisms. By evaluating the effectiveness of these strategies, the study aims to 
provide actionable recommendations for educators seeking to improve statistical literacy 
instruction in secondary school settings. 

Q5: What are the methods and strategies that are useful in the development of statistical 
literacy? 

By addressing these research questions, this study contributes to a deeper understanding of 
how statistical literacy is conceptualized, taught, and assessed within an interdisciplinary 
framework. The findings aim to inform educators, curriculum designers, and policy makers 
about best practices and emerging trends in statistical literacy education and ultimately 
support the development of more effective teaching methodologies. 
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2.GENERAL PROPERTIES OF METHOD 

In this study, a systematic review with PRISMA protocol was used to determine the results 
related to the improvement of the statistical literacy of middle school students, which 
interdisciplinary methods are used for statistical literacy and to determine what kind of studies 
have been done in this field. A systematic review is a determination of which studies will be 
included in the compilation using various inclusion and elimination criteria of all studies on a 
particular subject and the synthesis of the identified studies according to the research question 
[18][19]. The purpose of the systematic review is to synthesize the studies on a particular 
subject, reveal the general trend on that subject, and identify the deficiencies and possible 
studies on the subject [18][20]. 

The PRISMA protocol was developed by reviewers, clinicians, medical editors, and 
methodologists in 2005 for a more clear and complete reporting of systematic reviews and 
consists of a 27-item checklist and a 4-step flowchart [21]. PRISMA contributes to the quality 
and reproducibility of the process in studies such as systematic review and meta-analysis 
[22][23]. PRISMA offers three benefits: 1) it describes the research questions included in the 
systematic review, 2) it identifies inclusion and exclusion criteria, and 3) it allows for the 
investigation of a large database of literature.  

Review and inclusion criteria 

In this study, various combinations of keywords such as "statistical literacy, data literacy, 
middle school, material, method, strategy, process/steps" were used to search in Turkish and 
English in ERIC, Web of Science (WOS), and ULAKBIM (national database) databases to 
determine the methods used to improve the statistical literacy of middle school students. To 
reach more studies, studies after 2010 were considered, as well as relevant studies, practices, 
and compilations published in national and international journals. Only studies in which 
participants were middle school students were included. 

Elimination criteria 

This study included studies with English and Turkish texts; studies written in other languages 
were excluded. Selected articles are only included in WOS, ERIC and ULAKBIM databases. 
Articles outside of these databases are not included. The study excluded case reports, case 
texts, conference papers, reviews, theses, and reprinted publications. In order to develop more 
comprehensive research, the word interdisciplinary was not included in the inclusion criteria. 
However, the articles determined according to the inclusion criteria were not included in the 
study if they do not include an interdisciplinary approach. 
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Selection process of the studies 

Two of the researchers worked independently to identify and select the studies. As a result, 
the same selection procedure was followed twice. When there was a disagreement among the 
researchers, the expert opinion was sought. 1128 studies were obtained from ERIC (n=139), 
WOS (n=827) and ULAKBIM (n=162) electronic databases in accordance with the keywords 
determined in the first step of the study conducted in accordance with the PRISMA checklist. 
In the second step, 69 studies were determined according to the study title and abstract 
according to the inclusion and exclusion criteria, and 29 duplicates studies were excluded. In 
the third step, 20 articles were screened in detail according to inclusion and exclusion criteria. 
In the fourth step, the full text of the remaining 20 articles was examined in detail in 
accordance with the determined criteria and research questions (The list of articles included in 
the study is given in the Appendix). The applied PRISMA process is summarized in the flow 
chart in Figure 1. 
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20 articles included in the study comprise different types including practitioner papers. The 
practitioner papers are often produced for educators working in the field by educators or 
occasionally by researchers. Real classroom experiences and observations are highlighted in 
practitioner articles, which also primarily cover useful teaching advice and classroom ideas. 

Coding and analysis of data 

The researchers thoroughly examined all the studies included in the study, and some 
categories were established to analyze the subject. These were determined to be "year of the 
study, research method, grade level, data collection tools, data analysis method, 
interdisciplinary concept in statistical literacy and methods and strategies used in developing 
statistical literacy." The researchers then determined the codes for each study independently 
based on these pre-determined categories. The coding was done independently by two 
researchers, and the validity and reliability of the coding were also examined. The percentage 
of agreement among researchers was calculated as 0.91 (Reliability = Consensus / 
(Agreement + Disagreement) x 100). The Excel program was used for all coding and analysis. 
As a result, for analysis and interpretation, the frequency percentage values of the data 
belonging to each category were calculated, and a graphical method was used to better 
understand and interpret some results. 

3.APPLICATIONS 

Using the selection criteria, a total of 20 research articles that fit the research framework were 
analyzed in two main sections: research and teaching elements. In order to answer the 
research question of when the studies included in the study were conducted, 20 studies were 
examined in terms of publication year. The distribution of articles by year is shown in Table 1 
and Figure 2.  

Table 1. Distribution of years of studies within the scope of the research 

Year n % Year n % 
2010 
2011 
2012 
2013 
2014 
2015 

0 
2 
1 
3 
3 
1 

0 
10 
5 
15 
15 
5 

2016 
2017 
2018 
2019 
2020 
2021 
2022 

1 
1 
1 
0 
1 
4 

     2 

5 
5 
5 
0 
5 
20 
10 
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Figure 2. Number of articles reviewed over time 

When the publication years of the articles are considered, it is discovered that every year 
except 2010 and 2019, there is at least one article published on this subject, though it is higher 
in some years. The year with the most articles appears to be 2021 (n = 4). 

The study also looked into the research method or approach used in the 20 articles that were 
the subject of the study. Looking at all 20 studies, it is clear that some use a quantitative 
approach while others use a qualitative approach. Table 2 describes the various types of 
studies. 
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designed as practitioner papers. The sample types were examined in terms of grade level to 
answer the fourth research question. Table 3 depicts the situation for this analysis. 

Table 3. Distribution of sample types used in studies within the scope of the research 

Grade Level n % 
        4-6 
        5-8 
        6-8 
         7 
         8 
Middle years 
Upper elementary 

1 
3 
3 
7 
4 
1 
1 

5 
15 
15 
35 
20 
5 
5 

 

Table 3 shows that sample types are defined differently in the articles reviewed. Some studies 
include students from multiple grade levels, while others concentrate on a single grade level. 
Although some grade levels overlapped with others in the table because the definition of 
grade level varies by country, how grade level was defined in the study is provided here. 
When the studies are analyzed by grade level, it is discovered that the majority of them are in 
the seventh grade (n=6). The next grade level (n=4) is eighth grade. Studies focusing on a 
single level outnumber studies focusing on multiple levels, accounting for approximately 55 
percent of all studies. 

When the data collection tools used in the 20 articles studied are examined, it is discovered 
that different data collection tools were used depending on the study's research method. Table 
4 presents the distribution of data collection tools used in studies within the scope of the 
research. 

Table 4. Distribution of data collection tools used in studies within the scope of the research 

 n %  n % 
Questionnaire 2 6.8 Interview 7 24.1 

Test 6 20.7 Artifacts/written 
documents 13 44.8 

    Observation 1 3.4 
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Table 4 shows that multiple data collection tools were used in some of the studies. As a result, 
there are more data collection tools than studies. Artifacts and written documents are the most 
preferred data collection tools in qualitative studies, mixed-method research, developmental 
research, and case studies (n=13). In other words, artifacts/written documents made up 
roughly half of the total data collection tools used in the studies. After artifacts and written 
documents, interviews are the most used data collection tool in studies with a qualitative 
dimension (n=7). Tests are mostly used as data collection tools for quantitative dimension 
(n=6). 

When the studies' data analysis methods are examined, it is discovered that a variety of 
methods are used. Table 5 shows the data analysis methods used in the studies. 

Table 5. Distribution of data analysis methods used in studies within the scope of the research 

 n %  n % 

Document 
analysis/ 
Content 
analysis 

 

7 
 
 

41.1 
 
 

Chi-square 1 5.8 

T-test 2 11.8 
Anova 2 11.8 
Ancova 1 5.8 

Frequency 
table 3 17.6 Manova 1 5.8 

 

The data analysis methods used in the studies vary, as shown in Table 5. However, some 
studies use separate analysis methods for quantitative and qualitative data, and content 
analysis is the most used data analysis method (41.1%). The t-test is preferred over other 
analysis methods for quantitative analysis, but the percentage is not as high. Because data 
analysis and presentation take the form of student work and process explanation, practical 
articles are not included in this section. 

The findings to this point are for analyzing the studies investigated in the research dimension. 
The details of the findings discussed in the studies are included in the second part of the 
findings. Table 6 shows the analysis of articles in terms of the concept of interdisciplinary 
connections. 
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Table 6. Analysis of Articles in Terms of the Concept of Interdisciplinary Connections 

Article 
(Authors, 
publication 
year) 

How did the 
author(s) handle 
interdisciplinary 
connections? 

How did the 
author(s) use it? 

Scope/concept 
and procedures 
focused 

Instructional 
process (if any) 

Akar, N., & 
Övez, F. T. D. 
(2018) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines 
and in daily life 

Including own 
views or the 
views of other 
authors in the 
literature on this 
subject 
 

Graphs 
(Examining how 
this concept is 
included in 
course materials) 

None  
 

Blagdanic, C., 
& Chinnappan, 
M. (2013) 

Presenting an 
example of 
practice to 
improve statistical 
literacy 
 

Using activities 
that require 
learning graphs 
by using real-
life situations as 
a context 
 

Creating and 
interpreting 
graphs with real-
life contexts 
 

Implementing 
activities to 
experience the 
process 

Çakıroğlu, Ü., 
& Güler, M. 
(2021) 

Using 
gamification as an 
interdisciplinary 
concept 
 

Using 
gamification as 
a tool in 
statistics 
teaching 
 

Line graph, pie 
graph, median, 
mode 
 
 

Teaching the 
concepts of 
statistics with 
gamification 
 

Çakmak, Z. T. 
& Durmuş, S. 
(2015) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines 
and in daily life  

Revealing the 
concepts and 
reasons that are 
difficult to learn 
about statistics 
and probability 

All concepts 
related to 
probability and 
statistics in the 
national 
curriculum in 
grades 6-8 
 

None 
 

Conti, K. C., 
& De 
Carvalho, D. 
L. (2014) 

Taking a 
discipline as a 
basis and 
supporting it with 
another discipline 
(Using 
Technology in 
Mathematics) 
 
 

Making use of 
technology in 
activities in the 
project carried 
out to improve 
statistical 
literacy 
 

Formulating 
research 
questions, 
creating tables 

Conducting three 
activities 
(preparing a 
questionnaire, 
tabulating the 
data and 
presenting it as a 
poster) to 
improve 
statistical literacy 
as part of a 
project 
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Güler, H. K., 
& Kabar, M. 
G. D. (2021) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines  

Including own 
views or the 
views of other 
authors in the 
literature on this 
subject  
 

Reading and 
interpreting 
graphs 
 

Implementation 
of activities for 
reading and 
interpreting 
graphs 
 

Gürbüz, R., 
Yıldırım, İ., & 
Doğan, M. F. 
(2021) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines 
and in daily life 

Including own 
views or the 
views of other 
authors in the 
literature on this 
subject 
 

Line graph, 
mean, median, 
and mod 
 
 

Using error-
based activities 
in teaching 
 

Koparan, T., & 
Güven, B. 
(2014) 

Selecting topics in 
a way to include 
interdisciplinary 
themes during the 
project process 

Conducting the 
project around 
an 
interdisciplinary 
theme  
 

Generating 
research 
questions, data 
collection and 
data analysis 
 

Project-based 
learning process 
 

Martí, E., 
García-Mila, 
M., Gabucio, F., 
& 
Konstantinidou, 
K. (2011) 

Not mentioning 
the 
interdisciplinary 
connection 
 

Not mentioning 
the 
interdisciplinary 
connection 
 

Creating binary 
tables 
 

Activities 
requiring asking 
students to create 
a table for the 
given situation 
 
 

Mota, A. I., 
Oliveira, H., & 
Henriques, A. 
(2016) 

Taking a 
discipline as a 
basis and 
supporting it 
with another 
discipline 
(Using 
Technology in 
Mathematics) 
 

Using Tinker 
plots software 
in teaching  
 

Data 
interpretation 
 

Activities 
including 
analyzing and 
predicting the 
real data by using 
Tinker plots 
 

Ozmen, Z. M., 
Guven, B., & 
Kurak, Y. 
(2020) 

Not mentioning 
the 
interdisciplinary 
connection 
 

Not mentioning 
the 
interdisciplinary 
connection 
 

Reading, 
interpreting, 
creating, 
comparing and 
evaluating graphs 
(Descriptive 
analysis of 
students' 
solutions) 
 
 
 
 

None 
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Güler, H. K., 
& Kabar, M. 
G. D. (2021) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines  

Including own 
views or the 
views of other 
authors in the 
literature on this 
subject  
 

Reading and 
interpreting 
graphs 
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of activities for 
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interpreting 
graphs 
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Including own 
views or the 
views of other 
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Line graph, 
mean, median, 
and mod 
 
 

Using error-
based activities 
in teaching 
 

Koparan, T., & 
Güven, B. 
(2014) 

Selecting topics in 
a way to include 
interdisciplinary 
themes during the 
project process 

Conducting the 
project around 
an 
interdisciplinary 
theme  
 

Generating 
research 
questions, data 
collection and 
data analysis 
 

Project-based 
learning process 
 

Martí, E., 
García-Mila, 
M., Gabucio, F., 
& 
Konstantinidou, 
K. (2011) 

Not mentioning 
the 
interdisciplinary 
connection 
 

Not mentioning 
the 
interdisciplinary 
connection 
 

Creating binary 
tables 
 

Activities 
requiring asking 
students to create 
a table for the 
given situation 
 
 

Mota, A. I., 
Oliveira, H., & 
Henriques, A. 
(2016) 

Taking a 
discipline as a 
basis and 
supporting it 
with another 
discipline 
(Using 
Technology in 
Mathematics) 
 

Using Tinker 
plots software 
in teaching  
 

Data 
interpretation 
 

Activities 
including 
analyzing and 
predicting the 
real data by using 
Tinker plots 
 

Ozmen, Z. M., 
Guven, B., & 
Kurak, Y. 
(2020) 

Not mentioning 
the 
interdisciplinary 
connection 
 

Not mentioning 
the 
interdisciplinary 
connection 
 

Reading, 
interpreting, 
creating, 
comparing and 
evaluating graphs 
(Descriptive 
analysis of 
students' 
solutions) 
 
 
 
 

None 
 

 
Selmer, S. J., 
Bolyard, J. J., & 
Rye, J. A. 
(2011) 

Connecting 
mathematics 
and another 
discipline 
(Science) 
 

Using the 
science theme 
as a context in 
the process of 
activities to 
develop 
statistical 
literacy 
 

Statistical 
literacy cycle 
consisting of 
creating research 
questions, 
collecting data, 
presenting and 
interpreting data 
 

Teaching process 
consisting of a 
series of 
activities in the 
context of 
nutrition theme 
 

Selmer, S. J., 
Rye, J. A., 
Malone, E., 
Fernandez, D., 
& Trebino, K. 
(2014) 

Connecting 
mathematics 
and another 
discipline 
(Science) 
 

Using the 
science theme 
as a context in 
the process of 
activities within 
project process 
to develop 
statistical 
literacy 
 

Statistical 
literacy cycle 
consisting of 
creating research 
questions, 
collecting data, 
presenting and 
interpreting data 
 

Project-based 
learning process 
including 
gardening and 
local product 
market activities 
at school 
 

Sharma, S. 
(2013) 

Building on one 
discipline and 
supplementing 
it with another 
(use of 
strategies 
related to 
Reading and 
writing in 
Mathematics) 
 

Associating 
reading and 
writing 
strategies with 
the statistics 
teaching 
process 
 

Data evaluation 
 

Performing a 
series of 
activities that 
require students 
to evaluate 
statistical 
discoveries made 
by others in 
terms of data 
collection 
method, 
measurement 
tool, and validity 
of findings 
 

Swan, K., 
Vahey, P., van't 
Hooft, M., 
Kratcoski, A., 
Rafanan, K., 
Stanford, T., & 
Cook, D. (2013) 
 

Integration of 
Social Studies, 
Science, 
Mathematics 
and Language 
teaching 
 

Consecutive 
teaching 
processes of 
four disciplines 
within the 
framework of a 
common theme 
 
 

Asking 
appropriate 
questions, using 
appropriate data 
representation 
methods, using 
data processing 
methods, making 
data-based 
comments and 
explanations 
 
 
 
  

Teaching process 
with the 
Preparation for 
the Future 
Learning 
Framework 
(interdisciplinary 
unit processing 
with a problem-
based approach) 
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Utomo, D. P. 
(2021) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines 
and in daily life  

Including own 
views or the 
views of other 
authors in the 
literature on this 
subject 
 

Understanding 
the problem, 
presenting the 
data, interpreting 
the data 
(Examining 
student solutions 
to TIMSS 
problems) 
 

None 

Vahey, P., 
Rafanan, K., 
Patton, C., 
Swan, K., van’t 
Hooft, M., 
Kratcoski, A., & 
Stanford, T. 
(2012) 

Integration of 
Social Studies, 
Science, 
Mathematics 
and Language 
teaching 
 

Consecutive 
teaching 
processes of 
four disciplines 
within the 
framework of a 
common theme 
 
 

Asking 
appropriate 
questions, using 
appropriate data 
representation 
methods, using 
data processing 
methods, making 
data-based 
comments and 
explanations 
  

Teaching process 
with the 
Preparation for 
the Future 
Learning 
Framework 
(interdisciplinary 
unit processing 
with a problem-
based approach) 
 

Yanık, H. B., 
Özdemir, G., & 
Eryılmaz-
Çevirgen, A. 
(2017) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines 
and in daily life  

Including own 
views or the 
views of other 
authors in the 
literature on this 
subject 

Data processing 
(Examining how 
data processing is 
included in 
activities in 
textbooks) 

None 

Büscher, C. 
(2022) 

Presenting an 
example of 
practice to 
improve 
statistical 
literacy 
 

Using activities 
that require the 
use of statistical 
literacy 
 

Basic statistical 
concepts (i.e. 
mean) 

Online course 
structure 

Morris,B.J., 
Masnick, A. M., 
& Was, C. A. 
(2022) 

Connecting 
mathematics 
and another 
discipline 
(Sports) 
 

Using activities 
that require the 
use of statistical 
literacy 
 

Basic statistical 
concepts (i.e. 
average) 

Computerized 
testing 

When the studies are examined in terms of how they handle multidisciplinary interaction, it is 
seen that there are several approaches. These include highlighting the value of connections, 
successive teaching across disciplines, performing projects within the context of a common 
theme including several disciplines, and employing other disciplines to support it based on 
mathematics. Interdisciplinary connections occurred in the studies in a variety of ways, 
including by conducting common lesson processes, taking it into account during project 
planning, carrying out classroom activities, and including it in the literature review section. 
Some of the studies covered the statistical literacy cycle as a whole, while others focused on a 
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Yanık, H. B., 
Özdemir, G., & 
Eryılmaz-
Çevirgen, A. 
(2017) 

Mentioning the 
importance of 
concepts in 
mathematics in 
other disciplines 
and in daily life  

Including own 
views or the 
views of other 
authors in the 
literature on this 
subject 

Data processing 
(Examining how 
data processing is 
included in 
activities in 
textbooks) 

None 

Büscher, C. 
(2022) 

Presenting an 
example of 
practice to 
improve 
statistical 
literacy 
 

Using activities 
that require the 
use of statistical 
literacy 
 

Basic statistical 
concepts (i.e. 
mean) 

Online course 
structure 

Morris,B.J., 
Masnick, A. M., 
& Was, C. A. 
(2022) 

Connecting 
mathematics 
and another 
discipline 
(Sports) 
 

Using activities 
that require the 
use of statistical 
literacy 
 

Basic statistical 
concepts (i.e. 
average) 

Computerized 
testing 

When the studies are examined in terms of how they handle multidisciplinary interaction, it is 
seen that there are several approaches. These include highlighting the value of connections, 
successive teaching across disciplines, performing projects within the context of a common 
theme including several disciplines, and employing other disciplines to support it based on 
mathematics. Interdisciplinary connections occurred in the studies in a variety of ways, 
including by conducting common lesson processes, taking it into account during project 
planning, carrying out classroom activities, and including it in the literature review section. 
Some of the studies covered the statistical literacy cycle as a whole, while others focused on a 

particular subject. In studies on a particular topic, graphics is the most popular subject. 
Activities predominated in terms of instructional procedures, and project-based learning is 
frequently preferred. 

The studies analyzed in the scope of this study underlined some methods and strategies that 
worked on the development of statistical literacy. These practices are provided in Table 7. 

 

 

Table 7. Methods and strategies found useful on the development of statistical literacy 

 
       #                            Methods and Strategies 
1                  Using real life activities enriched with gamification elements 
2                  Using relevant, interesting, familiar, attractive and authentic contexts  
3                  Engaging students in the complex and demanding tasks 
4                  Connecting the statistical concepts with other concepts in mathematics 
5                  Giving emphasis to interpretation of the data 
6                  Incorporating real experiences into learning process 
7                  Using project-based learning 
8                  Providing opportunity to communicate the data in a detailed manner 
9                  Using erroneous examples 
10                Using cooperative learning activities 
11                Using student centered teaching principles 
12                Using real and readily available data in classroom tasks 
13                Using technology to perform tasks easily and faster 
14                Providing scaffolding support 
 

4.CONCLUSIONS 

The goal of this study is to present an analysis of studies dealing with statistical literacy and 
incorporating interdisciplinary interaction. In order to achieve this goal, the studies were 
scanned using specific keywords, and 20 articles that fit the purpose of the study were 
examined in terms of the year they were published, the grade level, the research design, the 
type of data collection tools used, data analysis methods, and the results they discussed. 

This study discovered that studies were conducted almost every year, with more studies 
conducted in the previous year. Statistical literacy is a process that has received attention 
[4][10][5][6]. Thus, increase in the number of studies focusing on statistical literacy is 
expected. Despite the interdisciplinary emphasis discussed in this study, studies on statistical 
literacy in the article scanning process have become more common in recent years, regardless 
of this emphasis. 
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When it comes to the research design preferred in the studies, case studies are preferred more 
in qualitative studies, while experimental studies are preferred more in quantitative studies. 
Because case studies in qualitative studies are a frequently preferred method in various fields 
of education to analyze the current situation [24] the fact that they are also preferred in the 
studies under consideration is a situation that overlaps with the general preferences. Likewise, 
experimental studies that deal with the effect appear to be preferred at this point. Practitioner 
papers make up a significant portion of the 20 studies. Four papers, or about a quarter of the 
total, are practitioner papers. It is critical that such articles present evidence-based educational 
practices and findings particularly useful for practitioners such as teachers and teacher 
candidates [25]. 

When we look at the grade levels where the studies are conducted, we can conclude that 
studies are conducted at various levels. The number of studies focusing on a single grade 
level, on the other hand, is greater than the number of studies focusing on more than one 
grade level. Different sample selection strategies may have been preferred based on the 
different nature of the studies [26]. 

When the findings about the data collection tools are examined, we see that the studies use 
more than one data collection tool. From this perspective, it is possible to state that more than 
one source [26] was used to improve the validity and reliability of the data in the studies. 
When the studies are evaluated in terms of data analysis, it is discovered that the analysis 
method varies depending on the research questions and data type, and the most prominent 
data analysis methods chosen in accordance with the nature of the studies are t-test and 
content analysis. This is not surprising result since these are among the common approaches 
[27][28] in educational research. 

When examining how the studies use the interdisciplinary approach, it is seen that they 
generally combine statistical literacy with different approaches such as mathematical 
concepts, social sciences, and daily life. It has been discovered that the authors generally take 
the interdisciplinary approach with the project-based approach, combining with technology, 
their own views and those of other authors in the literature. While most of the studies dealing 
with statistical literacy and interdisciplinary approach focused on creating and interpreting 
graphs or tables, few studies focused on concepts such as mode, median, and mean. In 
teaching these concepts with interdisciplinary approaches, it is seen that project-based 
approach, teaching with activity and teaching methods with gamification are frequently used. 
These findings are consistent with many different studies in the literature [10] [29]. Besides, 
several studies underlined the importance of student centeredness in learning by strategies 
such as using collaborative learning environments. Thus, statistical literacy is said to be 
developed by means of activity enriched learning environments as indicated in other studies 
[10]. 

In conclusion, in studies on statistical literacy, it has been determined that themes such as the 
use of real-life data, project-based learning, student-centered teaching, associating statistical 
concepts with other concepts in mathematics have emerged. From the findings, it can be said 
that the use of real-life data to explain statistical concepts and show the application of 
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graphs or tables, few studies focused on concepts such as mode, median, and mean. In 
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approach, teaching with activity and teaching methods with gamification are frequently used. 
These findings are consistent with many different studies in the literature [10] [29]. Besides, 
several studies underlined the importance of student centeredness in learning by strategies 
such as using collaborative learning environments. Thus, statistical literacy is said to be 
developed by means of activity enriched learning environments as indicated in other studies 
[10]. 

In conclusion, in studies on statistical literacy, it has been determined that themes such as the 
use of real-life data, project-based learning, student-centered teaching, associating statistical 
concepts with other concepts in mathematics have emerged. From the findings, it can be said 
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statistics is related to the types of student learning experience. In addition, it can be said that 
the use of interdisciplinary approaches such as social sciences, natural sciences or 
mathematical sciences in statistics teaching supports the approaches most commonly used in 
statistics teaching in schools (using real-life data, project-based learning, etc.). 

 

Limitations and future research directions 

Although statistical literacy has gained more attention in recent years than in previous years, 
the number of studies in this field is quite limited, particularly when viewed in the context of 
interdisciplinary interaction. In this context, it is critical to consider studies aimed at 
improving statistical literacy at various grade levels, different conceptual focuses, or 
procedural processes, as well as designing and implementing research processes. This study 
could handle 20 studies that were appropriate for the purpose. A greater number of studies in 
this area in the future may allow for the collection of different types of data.  

Another issue was the lack of longitudinal studies in the small sample size. Because Statistical 
Literacy development, like other literacy development, is a long-term process, longitudinal 
studies are considered important in terms of understanding the various stages and tools that 
are beneficial in the process. In this context, data from other studies and longitudinal studies 
can be included. Although a limited number of studies were examined here, the data from 
those studies provide a picture of the processes, strategies, and tools for improving statistical 
literacy through interdisciplinary interactions. With an increase in the number of practitioner 
papers, experimental studies, qualitative studies, and longitudinal studies containing such 
practices, a useful toolbox for researchers and practitioners would be created. 
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Abstract 

In this paper pseudosymmetric and Ricci pseudosymmetric of a Kenmotsu manifolds 

are researched. We have achieved the necessary and sufficient conditions for a Kenmotsu 

manifold, -pseudosymmetric, -Ricci pseudosymmetric,  -pseudosymmetric and -

Ricci pseudosymmetric. Additionally, some interesting results on Kenmotsu manifolds are 

obtained. 
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1.INTRODUCTION 

U.C. De and A. K. Gazi studied pseudo Ricci symmetric manifolds. They obtained a 

sufficient condition for a pseudo Ricci symmetric manifold to be a quasi Einsteain manifold. 

They proved that in a pseudo Ricci symmetric quasi Einstein manifold the scalar curvature 

vanishes and pseudo Ricci symmetric quasi Einstein perfect fluid spacetime has also been 

considered [8]. 

In a Riemannian manifold, the Riemannian curvature tensor is 𝑅𝑅 and for each 𝑋𝑋, 𝑌𝑌 ∈
𝜒𝜒(𝑀𝑀),  if 𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑅𝑅 = 0,  then the manifold is said to be semisymmetric. Similarly, if 

𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑆𝑆 = 0, the manifold is called Ricci semisymmetric, if 𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑃𝑃 = 0, the manifold 

is called projective semisymmetric, 𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑍̃𝑍 = 0 and the manifold is called concircular 

semisymmetric, where 𝑆𝑆 is the Ricci curvature tensor, 𝑃𝑃 is the projective curvature tensor and 

𝑍̃𝑍 is the concircular curvature tensor. Studies on the symmetric Riemannian manifolds started 
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U.C. De and A. K. Gazi studied pseudo Ricci symmetric manifolds. They obtained a 

sufficient condition for a pseudo Ricci symmetric manifold to be a quasi Einsteain manifold. 

They proved that in a pseudo Ricci symmetric quasi Einstein manifold the scalar curvature 

vanishes and pseudo Ricci symmetric quasi Einstein perfect fluid spacetime has also been 

considered [8]. 

In a Riemannian manifold, the Riemannian curvature tensor is 𝑅𝑅 and for each 𝑋𝑋, 𝑌𝑌 ∈
𝜒𝜒(𝑀𝑀),  if 𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑅𝑅 = 0,  then the manifold is said to be semisymmetric. Similarly, if 

𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑆𝑆 = 0, the manifold is called Ricci semisymmetric, if 𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑃𝑃 = 0, the manifold 

is called projective semisymmetric, 𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑍̃𝑍 = 0 and the manifold is called concircular 

semisymmetric, where 𝑆𝑆 is the Ricci curvature tensor, 𝑃𝑃 is the projective curvature tensor and 

𝑍̃𝑍 is the concircular curvature tensor. Studies on the symmetric Riemannian manifolds started 

with Cartan [5]. In the following periods, many authors have studied the curvature tensors of 

various manifolds [4, 6, 11, 14, 15, 16]. 

K. Kenmotsu studied a class of a contact Riemannian manifold and call them 

Kenmotsu manifold [13]. He studied that if Kenmotsu manifold satisfies the condition 

𝑅𝑅(𝑋𝑋, 𝑌𝑌). 𝑅𝑅 = 0, then the manifold is of negative curvature −1, where 𝑅𝑅 is the Riemannian 

curvature tensor of type (1,3) and 𝑅𝑅(𝑋𝑋, 𝑌𝑌) denotes the derivation of the tensor algebra at each 

point of the tangent space. The properties of Kenmotsu manifolds have been studied by 

several authors [7, 9, 20, 22, 23]. 

In this article, we have researched the pseudosymmetric and Ricci pseudosymmetric 

of Kenmotsu manifold. For Kenmotsu manifold, 𝑊𝑊8  pseudosymmetric, 𝑊𝑊8  Ricci 

pseudosymmetric, 𝑊𝑊9 pseudosymmetric and 𝑊𝑊9 Ricci pseudosymmetric cases are considered. 

Then some results are obtained and classifications have been made. 

2.PRELIMINARIES 

Let 𝑀𝑀 be a (2𝑛𝑛 + 1) −dimensional almost contact metric manifold with an almost 

contact metric structure (𝜙𝜙, 𝜉𝜉, 𝜂𝜂, 𝑔𝑔), that is, 𝜙𝜙 is an (1,1) tensor field, 𝜉𝜉 is a vector field, 𝜂𝜂 is a 

1-form and the Riemanniann metric 𝑔𝑔 on 𝑀𝑀 satisfy  

 𝜙𝜙2(𝑋𝑋) = −𝑋𝑋 + 𝜂𝜂(𝑋𝑋)𝜉𝜉,    𝜂𝜂(𝜙𝜙𝜙𝜙) = 0, (2.1) 

 𝜂𝜂(𝜉𝜉) = 1,    𝜙𝜙𝜙𝜙 = 0, 𝜂𝜂(𝜙𝜙) = 0 (2.2) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝜒𝜒(𝑀𝑀) [17]. Let 𝑔𝑔 be Riemannian metric compatible with (𝜙𝜙, 𝜉𝜉, 𝜂𝜂), that is  

 𝑔𝑔(𝜙𝜙𝜙𝜙, 𝜙𝜙𝜙𝜙) = 𝑔𝑔(𝑋𝑋, 𝑌𝑌) − 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑌𝑌), (2.3) 

 or equivalently, 

 𝑔𝑔(𝑋𝑋, 𝜙𝜙𝜙𝜙) = −𝑔𝑔(𝜙𝜙𝜙𝜙, 𝑌𝑌)    and    𝑔𝑔(𝑋𝑋, 𝜉𝜉) = 𝜂𝜂(𝑋𝑋) (2.4) 

for all 𝑋𝑋, 𝑌𝑌 ∈ 𝜒𝜒(𝑀𝑀) [2]. If in addition to above relation  

 (∇𝑋𝑋𝜙𝜙)𝑌𝑌 = −𝜂𝜂(𝑌𝑌)𝜙𝜙𝜙𝜙 − 𝑔𝑔(𝑋𝑋, 𝜙𝜙𝜙𝜙)𝜉𝜉, (2.5) 

and  

 ∇𝑋𝑋𝜉𝜉 = 𝑋𝑋 − 𝜂𝜂(𝑋𝑋)𝜉𝜉, (2.6) 
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where ∇ denotes the Riemannian connection of 𝑔𝑔 hold, then 𝑀𝑀(𝜙𝜙, 𝜉𝜉, 𝜂𝜂, 𝑔𝑔) is called Kenmotsu 

manifold. Kenmotsu manifold becomes a Kenmotsu manifold if  

 𝑔𝑔(𝑋𝑋, 𝜙𝜙𝜙𝜙) = 𝑑𝑑𝑑𝑑(𝑋𝑋, 𝑌𝑌). (2.7) 

In a Kenmotsu manifold 𝑀𝑀, the following relation holds [13, 9]:  

 (∇𝑋𝑋𝜂𝜂)𝑌𝑌 = 𝑔𝑔(𝑋𝑋, 𝑌𝑌) − 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑌𝑌), (2.8) 

 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝜉𝜉 = 𝜂𝜂(𝑋𝑋)𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝑋𝑋, (2.9) 

 𝑅𝑅(𝜉𝜉, 𝑋𝑋)𝑌𝑌 = 𝜂𝜂(𝑌𝑌)𝑋𝑋 − 𝑔𝑔(𝑋𝑋, 𝑌𝑌)𝜉𝜉, (2.10) 

 𝑆𝑆(𝑋𝑋, 𝜉𝜉) = −2𝑛𝑛𝑛𝑛(𝑋𝑋),     (2.11) 

 𝑄𝑄𝑄𝑄 = −2𝑛𝑛𝑛𝑛, (2.12) 

where 𝑅𝑅  is the Riemannian curvature tensor and 𝑆𝑆  is  Ricci tensor defined by 𝑆𝑆(𝑋𝑋, 𝑌𝑌) =
𝑔𝑔(𝑄𝑄𝑄𝑄, 𝑌𝑌), where 𝑄𝑄 is Ricci operator. It yields to 

 𝑆𝑆(𝜙𝜙𝜙𝜙, 𝜙𝜙𝜙𝜙) = 𝑆𝑆(𝑋𝑋, 𝑌𝑌) + 2𝑛𝑛𝑛𝑛(𝑋𝑋)𝜂𝜂(𝑌𝑌). (2.13) 

Definition 2.1 A Kenmotsu manifold 𝑀𝑀 is said to be an 𝜂𝜂 −Einstein manifold if its 

Ricci tensor 𝑆𝑆 of the form  

 𝑆𝑆(𝑋𝑋, 𝑌𝑌) = 𝛼𝛼𝛼𝛼(𝑋𝑋, 𝑌𝑌) + 𝛽𝛽𝛽𝛽(𝑋𝑋)𝜂𝜂(𝑌𝑌) (2.14) 

for arbitrary vector fields 𝑋𝑋, 𝑌𝑌; where 𝛼𝛼 and 𝛽𝛽 are functions on (𝑀𝑀2𝑛𝑛+1, 𝑔𝑔). If 𝛽𝛽 = 0, then 𝜂𝜂 − 

Einstein manifold becomes Einstein manifold [3].  

On a semi-Riemannian manifold (𝑀𝑀, 𝑔𝑔), for a (0, 𝑘𝑘) −type tensor field (0, 𝑘𝑘)-type 

tensor field 𝑇𝑇 and (0,2)-type tensor field 𝐴𝐴, (0, 𝑘𝑘 + 2)-type Tachibana tensor field 𝑄𝑄(𝐴𝐴, 𝑇𝑇) is 

defined as  

 𝑄𝑄(𝐴𝐴, 𝑇𝑇)(𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑘𝑘; 𝑋𝑋, 𝑌𝑌) = −𝑇𝑇((𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑘𝑘) 

 −𝑇𝑇(𝑋𝑋1, (𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋, 𝑋𝑋3, . . . , 𝑋𝑋𝑘𝑘). . . −𝑇𝑇(𝑋𝑋1, 𝑋𝑋2, . . . , (𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋𝑘𝑘), 

 . 

 . 

 −𝑇𝑇(𝑋𝑋1, 𝑋𝑋2, . . . , (𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋𝑘𝑘), (2.15) 
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where ∇ denotes the Riemannian connection of 𝑔𝑔 hold, then 𝑀𝑀(𝜙𝜙, 𝜉𝜉, 𝜂𝜂, 𝑔𝑔) is called Kenmotsu 

manifold. Kenmotsu manifold becomes a Kenmotsu manifold if  

 𝑔𝑔(𝑋𝑋, 𝜙𝜙𝜙𝜙) = 𝑑𝑑𝑑𝑑(𝑋𝑋, 𝑌𝑌). (2.7) 

In a Kenmotsu manifold 𝑀𝑀, the following relation holds [13, 9]:  

 (∇𝑋𝑋𝜂𝜂)𝑌𝑌 = 𝑔𝑔(𝑋𝑋, 𝑌𝑌) − 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑌𝑌), (2.8) 

 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝜉𝜉 = 𝜂𝜂(𝑋𝑋)𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝑋𝑋, (2.9) 

 𝑅𝑅(𝜉𝜉, 𝑋𝑋)𝑌𝑌 = 𝜂𝜂(𝑌𝑌)𝑋𝑋 − 𝑔𝑔(𝑋𝑋, 𝑌𝑌)𝜉𝜉, (2.10) 

 𝑆𝑆(𝑋𝑋, 𝜉𝜉) = −2𝑛𝑛𝑛𝑛(𝑋𝑋),     (2.11) 

 𝑄𝑄𝑄𝑄 = −2𝑛𝑛𝑛𝑛, (2.12) 

where 𝑅𝑅  is the Riemannian curvature tensor and 𝑆𝑆  is  Ricci tensor defined by 𝑆𝑆(𝑋𝑋, 𝑌𝑌) =
𝑔𝑔(𝑄𝑄𝑄𝑄, 𝑌𝑌), where 𝑄𝑄 is Ricci operator. It yields to 

 𝑆𝑆(𝜙𝜙𝜙𝜙, 𝜙𝜙𝜙𝜙) = 𝑆𝑆(𝑋𝑋, 𝑌𝑌) + 2𝑛𝑛𝑛𝑛(𝑋𝑋)𝜂𝜂(𝑌𝑌). (2.13) 

Definition 2.1 A Kenmotsu manifold 𝑀𝑀 is said to be an 𝜂𝜂 −Einstein manifold if its 

Ricci tensor 𝑆𝑆 of the form  

 𝑆𝑆(𝑋𝑋, 𝑌𝑌) = 𝛼𝛼𝛼𝛼(𝑋𝑋, 𝑌𝑌) + 𝛽𝛽𝛽𝛽(𝑋𝑋)𝜂𝜂(𝑌𝑌) (2.14) 

for arbitrary vector fields 𝑋𝑋, 𝑌𝑌; where 𝛼𝛼 and 𝛽𝛽 are functions on (𝑀𝑀2𝑛𝑛+1, 𝑔𝑔). If 𝛽𝛽 = 0, then 𝜂𝜂 − 

Einstein manifold becomes Einstein manifold [3].  

On a semi-Riemannian manifold (𝑀𝑀, 𝑔𝑔), for a (0, 𝑘𝑘) −type tensor field (0, 𝑘𝑘)-type 

tensor field 𝑇𝑇 and (0,2)-type tensor field 𝐴𝐴, (0, 𝑘𝑘 + 2)-type Tachibana tensor field 𝑄𝑄(𝐴𝐴, 𝑇𝑇) is 

defined as  

 𝑄𝑄(𝐴𝐴, 𝑇𝑇)(𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑘𝑘; 𝑋𝑋, 𝑌𝑌) = −𝑇𝑇((𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑘𝑘) 

 −𝑇𝑇(𝑋𝑋1, (𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋, 𝑋𝑋3, . . . , 𝑋𝑋𝑘𝑘). . . −𝑇𝑇(𝑋𝑋1, 𝑋𝑋2, . . . , (𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋𝑘𝑘), 

 . 

 . 

 −𝑇𝑇(𝑋𝑋1, 𝑋𝑋2, . . . , (𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑋𝑋𝑘𝑘), (2.15) 

for all 𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑘𝑘, 𝑋𝑋, 𝑌𝑌 ∈ 𝜒𝜒(𝑀𝑀), where  

 (𝑋𝑋 ∧𝐴𝐴 𝑌𝑌)𝑍𝑍 = 𝐴𝐴(𝑌𝑌, 𝑍𝑍)𝑋𝑋 − 𝐴𝐴(𝑋𝑋, 𝑍𝑍)𝑌𝑌. (2.16) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝜒𝜒(𝑀𝑀). 

3. CHARACTERIZATION OF PSEUDOSYMMETRIC AND RICCI 

PSEUDOSYMMETRIC KENMOTSU MANIFOLD 

In this section, the case of pseudosymmetry and Ricci pseudosymmetry of Kenmotsu 

manifold are investigated. According to 𝑊𝑊8  curvature tensor, 𝑊𝑊9  curvature tensor and 

concircular curvature tensors, the pseudosymmetrical and Ricci pseudosymmetrical cases of 

the Kenmotsu manifold can be given as follows. 

Let (𝑀𝑀, 𝑔𝑔) be an (2𝑛𝑛 + 1)-dimensional Riemannian manifold. Then the 𝑊𝑊8 curvature 

tensor is defined by [19]. Furthermore, 𝑊𝑊8  the curvature tensor for Riemannian manifold 

(𝑀𝑀2𝑛𝑛+1, 𝑔𝑔) is given by 

 𝑊𝑊8(𝑋𝑋, 𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍 − 1
2𝑛𝑛 [𝑆𝑆(𝑌𝑌, 𝑍𝑍)𝑋𝑋 − 𝑆𝑆(𝑋𝑋, 𝑌𝑌)𝑍𝑍] (3.1) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝜒𝜒(𝑀𝑀) [19]. If we choose, respectively, 𝑋𝑋 = 𝜉𝜉  and 𝑍𝑍 = 𝜉𝜉  in (3.1), then we 

obtain as follows: 

 𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝑍𝑍 = 𝜂𝜂(𝑍𝑍)𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝑍𝑍 − 𝑔𝑔(𝑌𝑌, 𝑍𝑍)𝜉𝜉 − 1
2𝑛𝑛 𝑆𝑆(𝑌𝑌, 𝑍𝑍)𝜉𝜉, (3.2) 

 𝑊𝑊8(𝑋𝑋, 𝑌𝑌)𝜉𝜉 = 𝜂𝜂(𝑋𝑋)𝑌𝑌 + 1
2𝑛𝑛 𝑆𝑆(𝑋𝑋, 𝑌𝑌)𝜉𝜉. (3.3) 

In addition, we choose 𝑍𝑍 = 𝜉𝜉 in (3.2), we obtain as follows: 

 𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝜉𝜉 = 𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉. (3.4) 

Definition 3.1 Let 𝑀𝑀 be Kenmotsu manifold with (2𝑛𝑛 + 1) −dimensional, 𝑅𝑅 be the 

Riemannian curvature tensor of 𝑀𝑀, 𝑆𝑆 be the Ricci curvature tensor of 𝑀𝑀. 

(i) If the pair 𝑅𝑅 ⋅ 𝑊𝑊8 and 𝑄𝑄(𝑔𝑔,𝑊𝑊8) are linearly dependent, that is, if a 𝜆𝜆1 function can 

be found on the set 

𝑀𝑀1 = {𝑥𝑥 ∈ 𝑀𝑀|𝑔𝑔(𝑥𝑥) ≠ 𝑊𝑊8(𝑥𝑥)} such that 

 𝑅𝑅.𝑊𝑊8 = 𝜆𝜆1𝑄𝑄(𝑔𝑔,𝑊𝑊8), (3.5) 
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the 𝑀𝑀 manifold is called a 𝑊𝑊8 pseudosymmetric manifold. 

(ii) If the pair 𝑅𝑅 ⋅ 𝑊𝑊8 and 𝑄𝑄(𝑆𝑆,𝑊𝑊8) are linearly dependent, that is, if a 𝜆𝜆2 function can 

be found on the set 

𝑀𝑀2 = {𝑥𝑥 ∈ 𝑀𝑀|𝑆𝑆(𝑥𝑥) ≠ 𝑊𝑊8(𝑥𝑥)} such that 

 𝑅𝑅.𝑊𝑊8 = 𝜆𝜆2𝑄𝑄(𝑆𝑆,𝑊𝑊8), (3.6) 

the 𝑀𝑀 manifold is called a 𝑊𝑊8 Ricci pseudosymmetric manifold. Particularly, if 𝜆𝜆1 = 0, then 

this manifold is said to be semisymmetric [10].  

Let us now investigate the cases of 𝑊𝑊8  pseudosymmetry and 𝑊𝑊8  Ricci 

pseudosymmetry. 

Theorem 3.2 If a (2𝑛𝑛 + 1) −dimensional 𝑀𝑀 Kenmotsu manifold is a 𝑊𝑊8 

pseudosymmetric manifold, then 𝑀𝑀 is a semisymmetric manifold.  

Proof. Let us suppose that Kenmotsu manifold 𝑀𝑀 is a 𝑊𝑊8 pseudosymmetric manifold. 

Then, we can write  

 (𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑊𝑊8)(𝑍𝑍, 𝑈𝑈,𝑊𝑊) = 𝜆𝜆1𝑄𝑄(𝑔𝑔,𝑊𝑊8)(𝑊𝑊, 𝑈𝑈, 𝑍𝑍; 𝑋𝑋, 𝑌𝑌), (3.7) 

for each 𝑋𝑋, 𝑌𝑌, 𝑍𝑍, 𝑈𝑈,𝑊𝑊 ∈ 𝜒𝜒(𝑀𝑀). This means that 

 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊8(𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊8(𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊8(𝑍𝑍, 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑈𝑈)𝑊𝑊 

 −𝑊𝑊8(𝑍𝑍, 𝑈𝑈)𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊 

 = −𝜆𝜆1{𝑊𝑊8((𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑊𝑊,𝑈𝑈)𝑍𝑍 +𝑊𝑊8(𝑊𝑊, (𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑈𝑈)𝑍𝑍 

 +𝑊𝑊8(𝑊𝑊,𝑈𝑈)(𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑍𝑍}. (3.8) 

Here taking 𝑋𝑋 = 𝑍𝑍 = 𝜉𝜉 and by using (2.9), (2.10) and (2.16) in (3.8), we reach at  

 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊)𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊) − 𝑅𝑅(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉, 𝑈𝑈)𝑊𝑊 

 −𝑊𝑊8(𝜉𝜉, 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 𝑔𝑔(𝑈𝑈, 𝑌𝑌)𝜉𝜉)𝑊𝑊 − 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝑊𝑊)𝑈𝑈 + 𝑔𝑔(𝑈𝑈, 𝑅𝑅(𝜉𝜉, 𝑌𝑌)𝑊𝑊) 

 = −𝜆𝜆1{𝑊𝑊8(𝑔𝑔(𝑌𝑌,𝑊𝑊)𝜉𝜉 − 𝜂𝜂(𝑊𝑊)𝑌𝑌, 𝑈𝑈)𝜉𝜉 +𝑊𝑊8(𝑊𝑊, 𝑔𝑔(𝑌𝑌, 𝑈𝑈)𝜉𝜉 − 𝜂𝜂(𝑈𝑈)𝑌𝑌) 

 +𝑊𝑊8(𝑊𝑊,𝑈𝑈)(𝜂𝜂(𝑌𝑌)𝜉𝜉 − 𝑌𝑌)}. (3.9) 
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the 𝑀𝑀 manifold is called a 𝑊𝑊8 pseudosymmetric manifold. 

(ii) If the pair 𝑅𝑅 ⋅ 𝑊𝑊8 and 𝑄𝑄(𝑆𝑆,𝑊𝑊8) are linearly dependent, that is, if a 𝜆𝜆2 function can 

be found on the set 

𝑀𝑀2 = {𝑥𝑥 ∈ 𝑀𝑀|𝑆𝑆(𝑥𝑥) ≠ 𝑊𝑊8(𝑥𝑥)} such that 

 𝑅𝑅.𝑊𝑊8 = 𝜆𝜆2𝑄𝑄(𝑆𝑆,𝑊𝑊8), (3.6) 

the 𝑀𝑀 manifold is called a 𝑊𝑊8 Ricci pseudosymmetric manifold. Particularly, if 𝜆𝜆1 = 0, then 

this manifold is said to be semisymmetric [10].  

Let us now investigate the cases of 𝑊𝑊8  pseudosymmetry and 𝑊𝑊8  Ricci 

pseudosymmetry. 

Theorem 3.2 If a (2𝑛𝑛 + 1) −dimensional 𝑀𝑀 Kenmotsu manifold is a 𝑊𝑊8 

pseudosymmetric manifold, then 𝑀𝑀 is a semisymmetric manifold.  

Proof. Let us suppose that Kenmotsu manifold 𝑀𝑀 is a 𝑊𝑊8 pseudosymmetric manifold. 

Then, we can write  

 (𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑊𝑊8)(𝑍𝑍, 𝑈𝑈,𝑊𝑊) = 𝜆𝜆1𝑄𝑄(𝑔𝑔,𝑊𝑊8)(𝑊𝑊, 𝑈𝑈, 𝑍𝑍; 𝑋𝑋, 𝑌𝑌), (3.7) 

for each 𝑋𝑋, 𝑌𝑌, 𝑍𝑍, 𝑈𝑈,𝑊𝑊 ∈ 𝜒𝜒(𝑀𝑀). This means that 

 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊8(𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊8(𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊8(𝑍𝑍, 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑈𝑈)𝑊𝑊 

 −𝑊𝑊8(𝑍𝑍, 𝑈𝑈)𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊 

 = −𝜆𝜆1{𝑊𝑊8((𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑊𝑊,𝑈𝑈)𝑍𝑍 +𝑊𝑊8(𝑊𝑊, (𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑈𝑈)𝑍𝑍 

 +𝑊𝑊8(𝑊𝑊,𝑈𝑈)(𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑍𝑍}. (3.8) 

Here taking 𝑋𝑋 = 𝑍𝑍 = 𝜉𝜉 and by using (2.9), (2.10) and (2.16) in (3.8), we reach at  

 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊)𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊) − 𝑅𝑅(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉, 𝑈𝑈)𝑊𝑊 

 −𝑊𝑊8(𝜉𝜉, 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 𝑔𝑔(𝑈𝑈, 𝑌𝑌)𝜉𝜉)𝑊𝑊 − 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝑊𝑊)𝑈𝑈 + 𝑔𝑔(𝑈𝑈, 𝑅𝑅(𝜉𝜉, 𝑌𝑌)𝑊𝑊) 

 = −𝜆𝜆1{𝑊𝑊8(𝑔𝑔(𝑌𝑌,𝑊𝑊)𝜉𝜉 − 𝜂𝜂(𝑊𝑊)𝑌𝑌, 𝑈𝑈)𝜉𝜉 +𝑊𝑊8(𝑊𝑊, 𝑔𝑔(𝑌𝑌, 𝑈𝑈)𝜉𝜉 − 𝜂𝜂(𝑈𝑈)𝑌𝑌) 

 +𝑊𝑊8(𝑊𝑊,𝑈𝑈)(𝜂𝜂(𝑌𝑌)𝜉𝜉 − 𝑌𝑌)}. (3.9) 

If we use (3.2), (3.3) and taking 𝑊𝑊 = 𝜉𝜉 in (3.9) and make the necessary abbreviations, then 

we have  

 𝜂𝜂(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝑌𝑌 − 𝑔𝑔(𝑌𝑌, 𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝜉𝜉 −𝑊𝑊8(𝑌𝑌, 𝑈𝑈)𝜉𝜉 + 𝜂𝜂(𝑌𝑌)𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 −𝜂𝜂(𝑈𝑈)𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝜉𝜉 −𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑌𝑌 + 𝜂𝜂(𝑌𝑌)𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 = −𝜆𝜆1{𝜂𝜂(𝑌𝑌)(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉) − (𝜂𝜂(𝑌𝑌)𝑈𝑈 + 1
2𝑛𝑛 𝑆𝑆(𝑈𝑈, 𝑌𝑌)𝜉𝜉) − 𝜂𝜂(𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉) 

 −𝜂𝜂(𝑌𝑌)(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉) −𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑌𝑌}. 

  (3.10) 

Taking the inner product with 𝜉𝜉 ∈ 𝜒𝜒(𝑀𝑀) on both sides of (3.10) and make use of (3.2), then 

we can infer  

 𝜆𝜆1[𝑔𝑔(𝑈𝑈, 𝑌𝑌) − 𝜂𝜂(𝑈𝑈)𝜂𝜂(𝑌𝑌)] = 0. (3.11) 

 On the other hand, we know that from (2.3) and (3.11), we conclude 

 𝜆𝜆1𝑔𝑔(𝜙𝜙𝜙𝜙,𝜙𝜙𝜙𝜙) = 0. 

 This completes our proof.   

Theorem 3.3 If a (2𝑛𝑛 + 1) −dimensional 𝑀𝑀 Kenmotsu manifold is a 𝑊𝑊8 Ricci 

pseudosymmetric manifold, then 𝑀𝑀 is a semisymmetric manifold.  

Proof. Let us assume that Kenmotsu manifold 𝑀𝑀  is a 𝑊𝑊8  Ricci pseudosymmetric 

manifold. This implies that  

 (𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑊𝑊8)(𝑍𝑍, 𝑈𝑈,𝑊𝑊) = 𝜆𝜆2𝑄𝑄(𝑆𝑆,𝑊𝑊8)(𝑊𝑊,𝑈𝑈, 𝑍𝑍; 𝑋𝑋, 𝑌𝑌), (3.12) 

for each 𝑋𝑋, 𝑌𝑌, 𝑍𝑍, 𝑈𝑈,𝑊𝑊 ∈ 𝜒𝜒(𝑀𝑀), that is, 

 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊8(𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊8(𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊8(𝑍𝑍, 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑈𝑈)𝑊𝑊 

 −𝑊𝑊8(𝑍𝑍, 𝑈𝑈)𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊 

 = −𝜆𝜆2{𝑊𝑊8((𝑋𝑋 ∧𝑆𝑆 𝑌𝑌)𝑊𝑊,𝑈𝑈)𝑍𝑍 +𝑊𝑊8(𝑊𝑊, (𝑋𝑋 ∧𝑆𝑆 𝑌𝑌)𝑈𝑈)𝑍𝑍 

 +𝑊𝑊8(𝑊𝑊,𝑈𝑈)(𝑋𝑋 ∧𝑆𝑆 𝑌𝑌)𝑍𝑍}. (3.13) 

Here, taking 𝑋𝑋 = 𝑍𝑍 = 𝜉𝜉 and using (2.9), (2.16) in (3.13), we arrive at  
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 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊)𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊) −𝑊𝑊8(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉, 𝑈𝑈)𝑊𝑊 

 −𝑊𝑊8(𝜉𝜉, 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 𝑔𝑔(𝑈𝑈, 𝑌𝑌)𝜉𝜉)𝑊𝑊 − 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝑊𝑊)𝑈𝑈 + 𝑔𝑔(𝑈𝑈,𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝑊𝑊) 

 = −𝜆𝜆2{𝑊𝑊8(𝑆𝑆(𝑌𝑌,𝑊𝑊)𝜉𝜉 + 2𝑛𝑛𝑛𝑛(𝑊𝑊)𝑌𝑌, 𝑈𝑈)𝜉𝜉 +𝑊𝑊8(𝑊𝑊, 𝑆𝑆(𝑌𝑌, 𝑈𝑈)𝜉𝜉 

 +2𝑛𝑛𝑛𝑛(𝑈𝑈)𝑌𝑌)𝜉𝜉 + 2𝑛𝑛𝑊𝑊8(𝑊𝑊,𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉)}. (3.14) 

If 𝜉𝜉 is taken of 𝑊𝑊 at (3.14), considering (2.11), (3.2), then we get  

 𝜂𝜂(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝑌𝑌 − 𝑔𝑔(𝑌𝑌, 𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝜉𝜉 −𝑊𝑊8(𝑌𝑌, 𝑈𝑈)𝜉𝜉 + 𝜂𝜂(𝑌𝑌)𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 −𝜂𝜂(𝑈𝑈)𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝜉𝜉 −𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑌𝑌 + 𝜂𝜂(𝑌𝑌)𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 = −𝜆𝜆2{−4𝑛𝑛𝑛𝑛(𝑌𝑌)(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉) + 2𝑛𝑛(𝜂𝜂(𝑌𝑌)𝑈𝑈 + 1
2𝑛𝑛 𝑆𝑆(𝑈𝑈, 𝑌𝑌)𝜉𝜉) 

 +2𝑛𝑛𝑛𝑛(𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉) + 2𝑛𝑛𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑌𝑌}. (3.15) 

Inner product both sides of (3.15) by 𝜉𝜉 ∈ 𝜒𝜒(𝑀𝑀) and make the necessary adjustments, we 

obtain  

 𝜆𝜆2[𝑔𝑔(𝑈𝑈, 𝑌𝑌) − 𝜂𝜂(𝑈𝑈)𝜂𝜂(𝑌𝑌)] = 0. (3.16) 

 Additionally, from (2.3) we reach at 

 𝜆𝜆2𝑔𝑔(𝜙𝜙𝜙𝜙, 𝜙𝜙𝜙𝜙) = 0, 

which proves our assertion.  

Let (𝑀𝑀, 𝑔𝑔) be an (2𝑛𝑛 + 1)-dimensional Riemannian manifold. Then the 𝑊𝑊9 curvature 

tensor is defined by [19]. Furthermore, 𝑊𝑊9  the curvature tensor for Riemannian manifold 

(𝑀𝑀2𝑛𝑛+1, 𝑔𝑔) is given by 

 𝑊𝑊9(𝑋𝑋, 𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍 + 1
2𝑛𝑛 [𝑆𝑆(𝑋𝑋, 𝑌𝑌)𝑍𝑍 − 𝑔𝑔(𝑌𝑌, 𝑍𝑍)𝑄𝑄𝑄𝑄] (3.17) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝜒𝜒(𝑀𝑀) [19]. If we choose, respectively, 𝑋𝑋 = 𝜉𝜉 and 𝑍𝑍 = 𝜉𝜉 in (3.17), then we 

obtain as follows: 

 𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑍𝑍 = 𝜂𝜂(𝑍𝑍)𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝑍𝑍, (3.18) 
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 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊)𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑊𝑊) −𝑊𝑊8(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉, 𝑈𝑈)𝑊𝑊 

 −𝑊𝑊8(𝜉𝜉, 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 𝑔𝑔(𝑈𝑈, 𝑌𝑌)𝜉𝜉)𝑊𝑊 − 𝜂𝜂(𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝑊𝑊)𝑈𝑈 + 𝑔𝑔(𝑈𝑈,𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝑊𝑊) 

 = −𝜆𝜆2{𝑊𝑊8(𝑆𝑆(𝑌𝑌,𝑊𝑊)𝜉𝜉 + 2𝑛𝑛𝑛𝑛(𝑊𝑊)𝑌𝑌, 𝑈𝑈)𝜉𝜉 +𝑊𝑊8(𝑊𝑊, 𝑆𝑆(𝑌𝑌, 𝑈𝑈)𝜉𝜉 

 +2𝑛𝑛𝑛𝑛(𝑈𝑈)𝑌𝑌)𝜉𝜉 + 2𝑛𝑛𝑊𝑊8(𝑊𝑊,𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉)}. (3.14) 

If 𝜉𝜉 is taken of 𝑊𝑊 at (3.14), considering (2.11), (3.2), then we get  

 𝜂𝜂(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝑌𝑌 − 𝑔𝑔(𝑌𝑌, 𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝜉𝜉 −𝑊𝑊8(𝑌𝑌, 𝑈𝑈)𝜉𝜉 + 𝜂𝜂(𝑌𝑌)𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 −𝜂𝜂(𝑈𝑈)𝑊𝑊8(𝜉𝜉, 𝑌𝑌)𝜉𝜉 −𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑌𝑌 + 𝜂𝜂(𝑌𝑌)𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 = −𝜆𝜆2{−4𝑛𝑛𝑛𝑛(𝑌𝑌)(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉) + 2𝑛𝑛(𝜂𝜂(𝑌𝑌)𝑈𝑈 + 1
2𝑛𝑛 𝑆𝑆(𝑈𝑈, 𝑌𝑌)𝜉𝜉) 

 +2𝑛𝑛𝑛𝑛(𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉) + 2𝑛𝑛𝑊𝑊8(𝜉𝜉, 𝑈𝑈)𝑌𝑌}. (3.15) 

Inner product both sides of (3.15) by 𝜉𝜉 ∈ 𝜒𝜒(𝑀𝑀) and make the necessary adjustments, we 

obtain  

 𝜆𝜆2[𝑔𝑔(𝑈𝑈, 𝑌𝑌) − 𝜂𝜂(𝑈𝑈)𝜂𝜂(𝑌𝑌)] = 0. (3.16) 

 Additionally, from (2.3) we reach at 

 𝜆𝜆2𝑔𝑔(𝜙𝜙𝜙𝜙, 𝜙𝜙𝜙𝜙) = 0, 

which proves our assertion.  

Let (𝑀𝑀, 𝑔𝑔) be an (2𝑛𝑛 + 1)-dimensional Riemannian manifold. Then the 𝑊𝑊9 curvature 

tensor is defined by [19]. Furthermore, 𝑊𝑊9  the curvature tensor for Riemannian manifold 

(𝑀𝑀2𝑛𝑛+1, 𝑔𝑔) is given by 

 𝑊𝑊9(𝑋𝑋, 𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍 + 1
2𝑛𝑛 [𝑆𝑆(𝑋𝑋, 𝑌𝑌)𝑍𝑍 − 𝑔𝑔(𝑌𝑌, 𝑍𝑍)𝑄𝑄𝑄𝑄] (3.17) 

for all 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝜒𝜒(𝑀𝑀) [19]. If we choose, respectively, 𝑋𝑋 = 𝜉𝜉 and 𝑍𝑍 = 𝜉𝜉 in (3.17), then we 

obtain as follows: 

 𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑍𝑍 = 𝜂𝜂(𝑍𝑍)𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝑍𝑍, (3.18) 

 

 𝑊𝑊9(𝑋𝑋, 𝑌𝑌)𝜉𝜉 = 𝜂𝜂(𝑋𝑋)𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝑋𝑋 − 1
2𝑛𝑛 (𝑆𝑆(𝑋𝑋, 𝑌𝑌)𝜉𝜉 − 𝜂𝜂(𝑌𝑌)𝑄𝑄𝑄𝑄). (3.19) 

In addition, we choose 𝑍𝑍 = 𝜉𝜉 in (3.18), we obtain as follows: 

 𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝜉𝜉 = 𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉. (3.20) 

Definition 3.4 Let 𝑀𝑀 be Kenmotsu manifold with (2𝑛𝑛 + 1) −dimensional, 𝑅𝑅 be the 

Riemannian curvature tensor of 𝑀𝑀, 𝑆𝑆 be the Ricci curvature tensor of 𝑀𝑀 and 𝑊𝑊9 be the 

𝑊𝑊9 −curvature tensor. 

(i) If the pair 𝑅𝑅 ⋅ 𝑊𝑊9 and 𝑄𝑄(𝑔𝑔, 𝑊𝑊9) are linearly dependent, that is, if a 𝜆𝜆3 function can 

be found on the set 

𝑀𝑀3 = {𝑥𝑥 ∈ 𝑀𝑀|𝑔𝑔(𝑥𝑥) ≠ 𝑊𝑊9(𝑥𝑥)} such that 

 𝑅𝑅. 𝑊𝑊9 = 𝜆𝜆3𝑄𝑄(𝑔𝑔, 𝑊𝑊9), (3.21) 

the 𝑀𝑀 manifold is called a 𝑊𝑊9 pseudosymmetric manifold. 

(ii) If the pair 𝑅𝑅 ⋅ 𝑊𝑊9 and 𝑄𝑄(𝑆𝑆, 𝑊𝑊9) are linearly dependent, that is, if a 𝜆𝜆4 function can 

be found on the set 

𝑀𝑀4 = {𝑥𝑥 ∈ 𝑀𝑀|𝑆𝑆(𝑥𝑥) ≠ 𝑊𝑊9(𝑥𝑥)} such that 

 𝑅𝑅. 𝑊𝑊9 = 𝜆𝜆4𝑄𝑄(𝑆𝑆, 𝑊𝑊9), (3.22) 

the 𝑀𝑀 manifold is called a 𝑊𝑊9 Ricci pseudosymmetric manifold [10].  

Let us now investigate the cases of 𝑊𝑊9  pseudosymmetry and 𝑊𝑊9  Ricci 

pseudosymmetry. 

Theorem 3.5 If a (2𝑛𝑛 + 1) −dimensional 𝑀𝑀 Kenmotsu manifold is a 𝑊𝑊9 

pseudosymmetric manifold, then 𝑀𝑀 is an 𝜂𝜂 −Einstein manifold provided 𝜆𝜆3 ≠ −1 and 𝜆𝜆3 ≠ 0.  

Proof. Let us suppose that Kenmotsu manifold 𝑀𝑀 is a 𝑊𝑊9 pseudosymmetric manifold. 

Then, we can write  

 (𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑊𝑊9)(𝑍𝑍, 𝑈𝑈, 𝑊𝑊) = 𝜆𝜆3𝑄𝑄(𝑔𝑔, 𝑊𝑊9)(𝑊𝑊, 𝑈𝑈, 𝑍𝑍; 𝑋𝑋, 𝑌𝑌), (3.23) 

for each 𝑋𝑋, 𝑌𝑌, 𝑍𝑍, 𝑈𝑈, 𝑊𝑊 ∈ 𝜒𝜒(𝑀𝑀). This means that 

 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊9(𝑍𝑍, 𝑈𝑈)𝑊𝑊 − 𝑊𝑊9(𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍, 𝑈𝑈)𝑊𝑊 − 𝑊𝑊9(𝑍𝑍, 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑈𝑈)𝑊𝑊 
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 −𝑊𝑊9(𝑍𝑍, 𝑈𝑈)𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊 

 = −𝜆𝜆3{𝑊𝑊9((𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑊𝑊,𝑈𝑈)𝑍𝑍 +𝑊𝑊9(𝑊𝑊, (𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑈𝑈)𝑍𝑍 

 +𝑊𝑊9(𝑊𝑊,𝑈𝑈)(𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑍𝑍}, (3.24) 

that is, in the last equality taking 𝑋𝑋 = 𝑍𝑍 = 𝜉𝜉 and using (2.9), (2.10) and (3.18) in (3.24), we 

obtain  

 𝜂𝜂(𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑊𝑊)𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑊𝑊) −𝑊𝑊9(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉, 𝑈𝑈)𝑊𝑊 

 −𝑊𝑊9(𝜉𝜉, 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 𝑔𝑔(𝑈𝑈, 𝑌𝑌)𝜉𝜉)𝑊𝑊 − 𝜂𝜂(𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑊𝑊)𝑈𝑈 + 𝑔𝑔(𝑈𝑈,𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑊𝑊) 

 = −𝜆𝜆3{𝑊𝑊9(𝑔𝑔(𝑌𝑌,𝑊𝑊)𝜉𝜉 − 𝜂𝜂(𝑊𝑊)𝑌𝑌, 𝑈𝑈)𝜉𝜉 +𝑊𝑊9(𝑊𝑊, 𝑔𝑔(𝑌𝑌, 𝑈𝑈)𝜉𝜉 − 𝜂𝜂(𝑈𝑈)𝑌𝑌) 

 +𝑊𝑊9(𝑊𝑊,𝑈𝑈)(𝜂𝜂(𝑌𝑌)𝜉𝜉 − 𝑌𝑌)}. (3.25) 

If we use (3.18), (3.19) and taking 𝑊𝑊 = 𝜉𝜉 in (3.25) and make the necessary abbreviations, 

then we have  

 𝜂𝜂(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝑌𝑌 − 𝑔𝑔(𝑌𝑌, 𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝜉𝜉 −𝑊𝑊9(𝑌𝑌, 𝑈𝑈)𝜉𝜉 

 +𝜂𝜂(𝑌𝑌)𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝜉𝜉 − 𝜂𝜂(𝑈𝑈)𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝜉𝜉 −𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑌𝑌 

 +𝜂𝜂(𝑌𝑌)𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 = −𝜆𝜆3{2𝜂𝜂(𝑌𝑌)(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉) − (𝜂𝜂(𝑌𝑌)𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 1
2𝑛𝑛 𝑆𝑆(𝑈𝑈, 𝑌𝑌)𝜉𝜉 

 +𝜂𝜂(𝑈𝑈) 𝑄𝑄𝑄𝑄2𝑛𝑛) − 𝜂𝜂(𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉) − (𝜂𝜂(𝑌𝑌)𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝑌𝑌)}. (3.26) 

Taking the inner product with 𝜉𝜉 ∈ 𝜒𝜒(𝑀𝑀) on both sides of (3.26) and make use of (3.20), then 

we arrive  

 𝑆𝑆(𝑈𝑈, 𝑌𝑌) = 2𝑛𝑛
1+𝜆𝜆3

𝑔𝑔(𝑈𝑈, 𝑌𝑌) − 2𝑛𝑛𝜆𝜆3
1+𝜆𝜆3

𝜂𝜂(𝑈𝑈)𝜂𝜂(𝑌𝑌). (3.27) 

This completes our proof.  

Corollary 3.6 Let 𝑀𝑀 be a (2𝑛𝑛 + 1) −dimensional Kenmotsu manifold. If 𝑀𝑀 is a 𝑊𝑊9-

semisymmetric manifold, 𝑀𝑀 is an Einstein manifold.  
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 −𝑊𝑊9(𝑍𝑍, 𝑈𝑈)𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊 

 = −𝜆𝜆3{𝑊𝑊9((𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑊𝑊,𝑈𝑈)𝑍𝑍 +𝑊𝑊9(𝑊𝑊, (𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑈𝑈)𝑍𝑍 

 +𝑊𝑊9(𝑊𝑊,𝑈𝑈)(𝑋𝑋 ∧𝑔𝑔 𝑌𝑌)𝑍𝑍}, (3.24) 

that is, in the last equality taking 𝑋𝑋 = 𝑍𝑍 = 𝜉𝜉 and using (2.9), (2.10) and (3.18) in (3.24), we 

obtain  

 𝜂𝜂(𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑊𝑊)𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑊𝑊) −𝑊𝑊9(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉, 𝑈𝑈)𝑊𝑊 

 −𝑊𝑊9(𝜉𝜉, 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 𝑔𝑔(𝑈𝑈, 𝑌𝑌)𝜉𝜉)𝑊𝑊 − 𝜂𝜂(𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑊𝑊)𝑈𝑈 + 𝑔𝑔(𝑈𝑈,𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑊𝑊) 

 = −𝜆𝜆3{𝑊𝑊9(𝑔𝑔(𝑌𝑌,𝑊𝑊)𝜉𝜉 − 𝜂𝜂(𝑊𝑊)𝑌𝑌, 𝑈𝑈)𝜉𝜉 +𝑊𝑊9(𝑊𝑊, 𝑔𝑔(𝑌𝑌, 𝑈𝑈)𝜉𝜉 − 𝜂𝜂(𝑈𝑈)𝑌𝑌) 

 +𝑊𝑊9(𝑊𝑊,𝑈𝑈)(𝜂𝜂(𝑌𝑌)𝜉𝜉 − 𝑌𝑌)}. (3.25) 

If we use (3.18), (3.19) and taking 𝑊𝑊 = 𝜉𝜉 in (3.25) and make the necessary abbreviations, 

then we have  

 𝜂𝜂(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝑌𝑌 − 𝑔𝑔(𝑌𝑌, 𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝜉𝜉 −𝑊𝑊9(𝑌𝑌, 𝑈𝑈)𝜉𝜉 

 +𝜂𝜂(𝑌𝑌)𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝜉𝜉 − 𝜂𝜂(𝑈𝑈)𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝜉𝜉 −𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑌𝑌 

 +𝜂𝜂(𝑌𝑌)𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝜉𝜉 

 = −𝜆𝜆3{2𝜂𝜂(𝑌𝑌)(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉) − (𝜂𝜂(𝑌𝑌)𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 1
2𝑛𝑛 𝑆𝑆(𝑈𝑈, 𝑌𝑌)𝜉𝜉 

 +𝜂𝜂(𝑈𝑈) 𝑄𝑄𝑄𝑄2𝑛𝑛) − 𝜂𝜂(𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉) − (𝜂𝜂(𝑌𝑌)𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝑌𝑌)}. (3.26) 

Taking the inner product with 𝜉𝜉 ∈ 𝜒𝜒(𝑀𝑀) on both sides of (3.26) and make use of (3.20), then 

we arrive  

 𝑆𝑆(𝑈𝑈, 𝑌𝑌) = 2𝑛𝑛
1+𝜆𝜆3

𝑔𝑔(𝑈𝑈, 𝑌𝑌) − 2𝑛𝑛𝜆𝜆3
1+𝜆𝜆3

𝜂𝜂(𝑈𝑈)𝜂𝜂(𝑌𝑌). (3.27) 

This completes our proof.  

Corollary 3.6 Let 𝑀𝑀 be a (2𝑛𝑛 + 1) −dimensional Kenmotsu manifold. If 𝑀𝑀 is a 𝑊𝑊9-

semisymmetric manifold, 𝑀𝑀 is an Einstein manifold.  

Corollary 3.7 Let 𝑀𝑀 be a (2𝑛𝑛 + 1) −dimensional Kenmotsu manifold. If 𝑀𝑀 is a 𝑊𝑊9-

pseudosymmetric manifold, 𝑀𝑀 is an Einstein manifold, provided 𝜆𝜆3 = 0.  

Theorem 3.8 If a (2𝑛𝑛 + 1) −dimensional 𝑀𝑀 Kenmotsu manifold is a 𝑊𝑊9 Ricci 

pseudosymmetric manifold, then 𝑀𝑀 is an 𝜂𝜂 −Einstein manifold, provided 𝜆𝜆4 ≠ 1 and  𝜆𝜆4 ≠ 0  

Proof. Let us assume that Kenmotsu manifold 𝑀𝑀  is a 𝑊𝑊9  Ricci pseudosymmetric 

manifold. This implies that  

 (𝑅𝑅(𝑋𝑋, 𝑌𝑌) ⋅ 𝑊𝑊9)(𝑍𝑍, 𝑈𝑈,𝑊𝑊) = 𝜆𝜆4𝑄𝑄(𝑆𝑆,𝑊𝑊9)(𝑊𝑊,𝑈𝑈, 𝑍𝑍; 𝑋𝑋, 𝑌𝑌), (3.28) 

for each 𝑋𝑋, 𝑌𝑌, 𝑍𝑍, 𝑈𝑈,𝑊𝑊 ∈ 𝜒𝜒(𝑀𝑀), that is, 

 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊9(𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊9(𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑍𝑍, 𝑈𝑈)𝑊𝑊 −𝑊𝑊9(𝑍𝑍, 𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑈𝑈)𝑊𝑊 

 −𝑊𝑊9(𝑍𝑍, 𝑈𝑈)𝑅𝑅(𝑋𝑋, 𝑌𝑌)𝑊𝑊 

 = −𝜆𝜆4{𝑊𝑊9((𝑋𝑋 ∧𝑆𝑆 𝑌𝑌)𝑊𝑊,𝑈𝑈)𝑍𝑍 +𝑊𝑊9(𝑊𝑊, (𝑋𝑋 ∧𝑆𝑆 𝑌𝑌)𝑈𝑈)𝑍𝑍 

 +𝑊𝑊9(𝑊𝑊,𝑈𝑈)(𝑋𝑋 ∧𝑆𝑆 𝑌𝑌)𝑍𝑍}. (3.29) 

Taking 𝑋𝑋 = 𝑍𝑍 = 𝜉𝜉 and using (2.9), (3.18) in (3.29), we have 

 𝜂𝜂(𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑊𝑊)𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑊𝑊) −𝑊𝑊9(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉, 𝑈𝑈)𝑊𝑊 

 −𝑊𝑊9(𝜉𝜉, 𝜂𝜂(𝑈𝑈)𝑌𝑌 − 𝑔𝑔(𝑈𝑈, 𝑌𝑌)𝜉𝜉)𝑊𝑊 − 𝜂𝜂(𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑊𝑊)𝑈𝑈 + 𝑔𝑔(𝑈𝑈,𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝑊𝑊) 

 = −𝜆𝜆4{𝑊𝑊9(𝑆𝑆(𝑌𝑌,𝑊𝑊)𝜉𝜉 + 2𝑛𝑛𝑛𝑛(𝑊𝑊)𝑌𝑌, 𝑈𝑈)𝜉𝜉 +𝑊𝑊9(𝑊𝑊, 𝑆𝑆(𝑌𝑌, 𝑈𝑈)𝜉𝜉 

 +2𝑛𝑛𝑛𝑛(𝑈𝑈)𝑌𝑌)𝜉𝜉 + 2𝑛𝑛𝑊𝑊9(𝑊𝑊,𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉)}. (3.30) 

If we use (3.18), (3.20) and setting 𝑊𝑊 = 𝜉𝜉 in (3.30), then we get 

 𝜂𝜂(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝑌𝑌 − 𝑔𝑔(𝑌𝑌, 𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉)𝜉𝜉 −𝑊𝑊9(𝑌𝑌, 𝑈𝑈)𝜉𝜉 

 +𝜂𝜂(𝑌𝑌)𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝜉𝜉 − 𝜂𝜂(𝑈𝑈)𝑊𝑊9(𝜉𝜉, 𝑌𝑌)𝜉𝜉 −𝑊𝑊9(𝜉𝜉, 𝑈𝑈)𝑌𝑌 
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 = −𝜆𝜆4{−4𝑛𝑛𝑛𝑛(𝑌𝑌)(𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝜉𝜉) + 2𝑛𝑛(𝜂𝜂(𝑌𝑌)𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝑌𝑌 

 − 1
2𝑛𝑛 𝑆𝑆(𝑈𝑈, 𝑌𝑌)𝜉𝜉 + 𝜂𝜂(𝑈𝑈) 𝑄𝑄𝑄𝑄2𝑛𝑛) + 2𝑛𝑛(𝜂𝜂(𝑌𝑌)𝑈𝑈 − 𝜂𝜂(𝑈𝑈)𝑌𝑌) 
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 +2𝑛𝑛𝑛𝑛(𝑈𝑈)(𝑌𝑌 − 𝜂𝜂(𝑌𝑌)𝜉𝜉)}. (3.31) 

Inner product both sides of (3.31) by 𝜉𝜉 ∈ 𝜒𝜒(𝑀𝑀), we obtain  

 𝑆𝑆(𝑈𝑈, 𝑌𝑌) = − 2𝑛𝑛
1−𝜆𝜆4

𝑔𝑔(𝑈𝑈, 𝑌𝑌) + 𝜆𝜆4−4𝑛𝑛
1−𝜆𝜆4

𝜂𝜂(𝑌𝑌)𝜂𝜂(𝑈𝑈). 

which proves our assertion.  

Corollary 3.9 Let 𝑀𝑀 be a (2𝑛𝑛 + 1) −dimensional Kenmotsu manifold. If 𝑀𝑀 is a 𝑊𝑊9-

semisymmetric manifold, 𝑀𝑀 is an 𝜂𝜂 −Einstein manifold.  

Corollary 3.10 Let 𝑀𝑀 be a (2𝑛𝑛 + 1) −dimensional Kenmotsu manifold. If 𝑀𝑀 is a 𝑊𝑊9-

pseudosymmetric manifold, 𝑀𝑀 is an Einstein manifold  provided 𝜆𝜆4 = 4𝑛𝑛.  

4.CONCLUSIONS 

In this paper pseudosymmetric and Ricci pseudosymmetric of a Kenmotsu manifolds 

are researched. We have achieved the necessary and sufficient conditions for a Kenmotsu 

manifold, -pseudosymmetric, -Ricci pseudosymmetric,  -pseudosymmetric and -

Ricci pseudosymmetric. Additionally, some interesting results on Kenmotsu manifolds are 

obtained. 
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Abstract  

In this paper, we study a heat conduction problem in a rod that a boundary condition, 
which involves a linear combination of dependent variable and its derivative, arises when heat 
is lost from the end of the rod due to radiation into the surrounding medium. When we apply 
the seperation of variables method to solve the problem, Newton- Raphson method is used to 
calculate the eigenvalues of the equations we encounter. 

Keywords: Heat equation; Eigenvalue problem; Newton- Raphson method. 

1. INTRODUCTION 

The heat equation 

∇2u = a−2ut 

where a2 is a physical constant, arises in problems concerning the temperature distribution in 
homogeneous solids, electromagnetic theory, diffusion processes, and the propagation of cur-
rent in transmission lines. A properly-posed problem consists this equation coupled with a 
single boundary condition and single initial condition, an example of which is given by 

∇2u = a−2ut,   u  in  R 

u = g on ∂R 

u = f  for  t = 0. 

Here, R denotes the domain of the function 𝑢𝑢, and ∂R is the boundary of R.  

In this work, we study with a one-dimensional model for heat equation. Let us consider 
the following heat conduction problem in a rod that a boundary condition, which involves a 
linear combination of dependent variable and its derivative, arises when heat is lost from the 
end of the rod due to radiation into the surrounding medium: 

uxx = a−2ut, 0 < x < p                                                                                                 (1) 

u(0, t) = 0, hu(p, t) + ux(p, t) = 0,    t > 0                                                                   (2) 

u(x, 0) = f(x)                                                                                                                  (3) 
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where a2 is a positive constant known as the diffusivity of the material forming the rod and 

h > 0. Negative values of h would physically correspond to thermal energy constantly put 

into the rod through the right end [1]. Our aim is to solve this problem for a = 1, h = 1 and 

p = π. 

 

2. GENERAL PROPERTIES OF METHOD 

In this paper, we consider a heat equation and we solve it by separating variables. At 
that case, we must obtain eigenvalues and eigenfunctions of a eigenvalue problem. For this, 
we use Newton-Raphson method. 

The Newton-Raphson method is the best-known method of finding roots of a function. 
The method is simple and fast. One drawback of this method is that it uses the derivative of 
the function as well as the function f(x) itself. Hence, the Newton-Raphson method is usable 
only in problems where f(x) can be readily computed [2]. Newton-Raphson method is also 
called Newton’s method. Here, f(x) is continuous and differentiable. In this method, the solu-
tion process starts by selecting point x1 as the first estimate of the solution. The second esti-
mate x2 is found by drawing the tangent line to f(x) at the point (x1, f(x1)) and determining 
the intersection point of the tangent line with the x-axis. The next estimate x3 is the intersec-
tion of the tangent line to f(x) at the point (x2, f(x2)) with the x-axis, and so on. Since the 
tangent line of the function f(x) at point xn intersects the x-axis at point xn+1, the slope here is 
written as: 

f ′(xn) = f(xn) − 0
xn − xn+1

and from this equation, one gains 

xn+1 = xn − f(xn)
f ′(xn).

In this section, we solve the problem (1)-(3). Let’s look for a solution for this equation 
in the form of   u(x, t) = X(x)T(t) by the separation of variables method. If this solution 
u(x, t) is substituted into the heat equation: 

X′′(x)T(t) = a−2X(x)T′(t), 

that is 

X′′(x)
X(x) = a−2T′(t)

T(t) = −λ. 

From here, the following two equations are obtained: 
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In this section, we solve the problem (1)-(3). Let’s look for a solution for this equation 
in the form of   u(x, t) = X(x)T(t) by the separation of variables method. If this solution 
u(x, t) is substituted into the heat equation: 

X′′(x)T(t) = a−2X(x)T′(t), 

that is 

X′′(x)
X(x) = a−2T′(t)

T(t) = −λ. 

From here, the following two equations are obtained: 

1) X′′(x) + λX(x) = 0, 

2) T′(t) + a2λT(t) = 0. 

If the first boundary condition u(0, t) = 0 in the problem is applied, X(0)T(t) = 0 is found. 
For non- trivial solution T(t) ≠ 0 and X(0) = 0 must be. When the second boundary condi-
tion hu(p, t) + ux(p, t) = 0 is applied in the problem, the equation                         
hX(p)T(t) + X′(p) + T(t) = T(t){hX(p) + X′(p)} = 0 is found. For non- trivial solution 
T(t) ≠ 0 and hX(p) + X′(p) = 0 must be. Thus, the following eigenvalue problem for X(x) is 
obtained: 

X′′(x) + λX(x) = 0,   X(0) = 0, hX(p) + X′(p) = 0.                                                  (4) 

For the sake of brevity, we accept a = 1, h = 1 and p = π  in (1)-(3). Denoting the nth solu-
tion of  sin(kπ) + kcos(kπ) = 0 by kn, the eigenvalues and eigenfunctions of (4) are repre-
sented by  

λn = kn
2,  ϕn(x) = sin(knx),  n = 1,2,3, …                                                               (5) 

Returning now to T′(t) + λT(t) = 0, we obtain  

Tn(t) = cne−kn
2t, n = 1,2,3, …                                                                                     

which, combined with (5), gives the formal solution 

u(x, t) = ∑ cnsin (knx)e−kn
2t∞

n=1 .                                                                                (6) 

For the condition (2), setting t = 0 in (6) yields the relation  

u(x, 0) = f(x) = ∑ cnsin (knx)∞
n=1 , 0 < x < π, 

which is a generalized Fourier series. In this case the Fourier coefficients are calculated from 

cn = ‖ϕn(x)‖−2 ∫ f(x)sin (kn
π

0 x)dx, n = 1,2,3, … 

where 

‖ϕn(x)‖2 = ∫ sin2(knx)dxπ
0   

                             = 1
2 (π − sin (2knπ)

2kn
) 

                             = 1
2 (π − sin(knπ)cos (knπ)

kn
), 

but since sin(knπ) = kncos (knπ), we have  

‖ϕn(x)‖2 = 1
2 [π − cos2(knπ)], n = 1,2,3, … 
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We remark that kn is not exactly clear in (5). In this study, we calculate some kn by 

using Newton-Raphson method, so that one writes the solution of the heat equation from (6).  

Let us consider the problem (1)-(3) for a = 1, h = 1 and p = π. Hence, we have the 

following the eigenvalue problem X(x) and the equation for T(t): 

X′′(x) + λX(x) = 0,   X(0) = 0, X(π) + X′(π) = 0,                                                    (7) 

T′(t) + λT(t) = 0.                                                                                                         

Firstly, we note that (7) has a symmetric operator, so the eigenvalues of (7) are real. The solu-

tion of the problem (7) is examined according to the values of the λ parameter as follows: 

• If λ = 0, 

the equation is X′′ = 0 and the characteristic polynomial is r2 = 0. The roots of the characte-

ristic polynomial are found  r1 = r2 = 0 and the general solution is X(x) = c1 + c2x. If the 

first boundary condition X(0) = 0 is applied, c1 = 0 is obtained; if the second boundary con-

dition  X(π) + X′(π) = 0  is applied, c2π + c2 = c2(1 + π) = 0 is obtained. We know       

1 + π ≠ 0, so c2 = 0. That is, the solution X ≡ 0 is obtained. Thus, λ is not an eigenvalue.  

• If λ = −k2 < 0, 

the equation X′′ − k2X = 0 and the characteristic polynomial is r2 − k2 = 0. The roots of the 

characteristic polynomial are found r1 = −k , r2 = k  and the general solution is             

X(x) = c1 cosh(kx) + c2 sinh(kx).  If the first boundary condition X(0) = 0  is applied,     

c1 = 0  is obtained; if the secondary boundary condition X(π) + X′(π) = 0  is applied,           

c2 sinh(kπ) + kc2 cosh(kπ) = c2{sinh(kπ) + kcosh(kπ)} = 0 is obtained. Since we want to 

obtain a nontrivial solution c2 ≠ 0, it should be sinh(kπ) + kcosh(kπ) = 0. If k solved from 

this equation: 

k = − sinh(kπ)
cosh(kπ) = − tanh(kπ). 

Here, the graphs of the u = k and u = −tanh (kπ) functions are drawn, the intersection po-

ints of the two equations are investigated. The graph is as follows: 
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Figure 1. Graphs of the functions u = k and  u = −tanh (kπ) 

As can be seen from the graph, the only intersection point is zero. But since k ≠ 0,  λ = −k2 

is not eigenvalue.  

• If λ = k2 > 0, 

the equation X′′ + k2X = 0 and the characteristic polynomial is r2 + k2 = 0. The roots of the 

characteristic polynomial are found  r1 = −ik, r2 = ik  and the general solution is          

X(x) = c1 cos(kx) + c2 sin(kx). If the first boundary condition X(0) = 0 is applied, c1 = 0 is 

obtained; if the second boundary condition X(π) + X′(π) = 0  is applied,              

c2 sin(kπ) + kc2 cos(kπ) = c2{sin(kπ) + kcos(kπ)} = 0 is obtained. Since we want to ob-

tain a nontrivial solution, c2 ≠ 0, it should be sin(kπ) + kcos(kπ) = 0. The k values that 

provide this equation will form the eigenvalues. To find the roots of the equation, that is, the k 

values that provide the equation, the Newton- Raphson method is applied. The iteration is 

constructed as follows: 

Since f(x) = sin(πx) + xcos(πx) , f ′(x) = π cos(πx) + cos(πx) − xπ sin(πx).  So from the 

formula xn+1 = xn − f(xn)
f′(xn) ,  

xn+1 = xn − sin(πxn) + xn cos(πxn)
π cos(πxn) + cos(πxn) − xnπ sin(πxn), 

and so 
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xn+1 = xnπ cos(πxn) − sin (πxn){xn
2π + 1}

π cos(πxn) + cos(πxn) − xnπsin (πxn). 

Let’s determine the starting point for the iteration by using the graphs of the sin(πx) and 

−xcos(πx) functions: 

 

        Figure 2. Graphs of the functions sin(πx) and −xcos(πx) 

Let’s start the iteration with x0 = 0.6: 

• If x0 = 0.6, 

f(x0) = sin(0.6π) + 0.6 cos(0.6π) = 0.765646. 

• If x1 = 0.6π cos(π0.6)−sin (π0.6){0.6π+1}
0.6 cos(π0.6)+cos(π0.6)−0.6πsin (π0.6) = 0.849192, 

f(x1) = −0.299404. 

• If x2 = 0.788122, 

f(x2) = −0.002319. 

• If x3 = 0.787637, 

f(x3) = 0.000001. 
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Let’s start the iteration with x0 = 0.6: 

• If x0 = 0.6, 

f(x0) = sin(0.6π) + 0.6 cos(0.6π) = 0.765646. 

• If x1 = 0.6π cos(π0.6)−sin (π0.6){0.6π+1}
0.6 cos(π0.6)+cos(π0.6)−0.6πsin (π0.6) = 0.849192, 

f(x1) = −0.299404. 

• If x2 = 0.788122, 

f(x2) = −0.002319. 

• If x3 = 0.787637, 

f(x3) = 0.000001. 

• x4 = 0.787637. 

Since here xi, i ≥ 3  values repeat and because it is f(xi) = 0.000001 , the root of the 

sin(πx) + xcos(πx) = 0 equation is found as x ≅ 0.787637. Thus λ = k2 > 0 is the eigen-

value and the first positive eigenvalue λ1 = (0.787637)2 is obtained. Also, substitution this 

value 𝑘𝑘1 = 0.787637 into the equation (6), one gives the solution of the heat problem (1)-(3). 

Let’s start the iteration with x0 = 1.5.  

• If x0 = 1.5 , 

f(x0) = sin(1.5π) + 1.5 cos(1.5π) = −1.000000. 

• If x1 = 1.5π cos(π1.5)−sin (π1.5){1.5π+1}
1.5 cos(π1.5)+cos(π1.5)−1.5πsin (π1.5) = 1.712207, 

f(x1) = 0.272892. 

• If x2 = 1.672007, 

f(x2) = 0.002663. 

• If x3 = 1.671606, 

f(x3) = 0.000002. 

• x4 = 1.671606. 

Since here xi, i ≥ 3  values repeat and because it is f(xi) = 0.000002 , the root of the 

sin(πx) + xcos(πx) = 0 equation is found as x ≅ 1.671606. Thus λ = k2 > 0 is the eigen-

value and the second positive eigenvalue λ2 = (1.671606)2 is obtained. Also, substitution 

this value 𝑘𝑘2 = 1.671606 into the equation (6), one gives the solution of the heat problem 

(1)-(3). 

Similarly, 𝜆𝜆3 = −1.671606 and 𝜆𝜆4 =  2.616214 are calculated. 

We note that we also verify these values by using MAXIMA.  

4. CONCLUSIONS 

In this paper, we consider a heat problem so that when we apply the seperation of vari-
ables method to solve the problem, we see that the eigenvalues are not clear. We use Newton- 
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Raphson method to calculate approximation eigenvalues, and we find the first two eigenva-
lues and hence one writes the solution of the heat problem.  
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Abstract  

In this study, the concept of a ring, which is an algebraic structure, is combined with 

rough set theory. Along with the definitions and theorems of rough rings, rough subrings and 

rough ideals, rough quotient rings and homomorphisms of rough rings are introduced. 

Keywords: Rough set theory; Rough rings; Rough ideals; Rough quotient rings; 

Homomorphisms of rough rings. 

1.INTRODUCTION 

Rough set theory, discovered by Pawlak in 1982, is a useful set model for understanding unclear 
information [1]. Rough set theory has been applied to most algebraic structures and successful 
results have been obtained [2-8]. In addition to mathematics, it is also used in fields such as 
medicine, data mining, artificial intelligence and machine learning [10-13]. In this section, the 
basic properties of the rough set model are discussed. Also, the adaptation of rough set theory 
to the concepts of group, ring and ideal is shown. 

Definition 1.1  Let 𝐹𝐹 is a universe (non-empty) set and 𝜃𝜃 is an equivalence relation on 𝐹𝐹. The 
set (𝐹𝐹, 𝜃𝜃) is said to be an approximation space. We denote the equivalence class of object 𝑎𝑎 ∈
𝐹𝐹 by [𝑎𝑎]𝜃𝜃 . Suppose (𝐹𝐹, 𝜃𝜃)  is an approximation space and 𝑆𝑆 is a subset of 𝐹𝐹. The sets 𝑆𝑆 =
{ 𝑎𝑎 ∈ 𝐹𝐹 ∶  [𝑎𝑎]𝜃𝜃 ⊆ 𝑆𝑆} , 𝑆𝑆 = { 𝑎𝑎 ∈ 𝐹𝐹 ∶  [𝑎𝑎]𝜃𝜃 ∩ 𝑆𝑆 ≠ ∅} , 𝐵𝐵𝐵𝐵𝐵𝐵(𝑆𝑆) = 𝑆𝑆 −  𝑆𝑆  are called upper 
approximation, lower approximation, and boundary region of 𝑆𝑆, respectively. If 𝐵𝐵𝐵𝐵𝐵𝐵(𝑆𝑆) ≠ ∅, 
then 𝑆𝑆 is rough set [1]. 

Definition 1.2  Let (𝐹𝐹, 𝜃𝜃) be an approximation space and ∗ be a binary operation on 𝐹𝐹. 𝐴𝐴 ⊂ 𝐹𝐹 
is called a rough group if the following properties are satisfied: 

𝑖𝑖) ∀𝜇𝜇, 𝜗𝜗 ∈ 𝐴𝐴, 𝜇𝜇 ∗  𝜗𝜗 ∈ 𝐴𝐴 

𝑖𝑖𝑖𝑖) ∀𝜇𝜇, 𝜗𝜗, 𝜀𝜀 ∈ 𝐴𝐴, ( 𝜇𝜇 ∗  𝜗𝜗)  ∗ 𝜀𝜀 = 𝜇𝜇 ∗ (𝜗𝜗 ∗  𝜀𝜀) or associative property holds in 𝐴𝐴. 

𝑖𝑖𝑖𝑖𝑖𝑖) ∀𝜇𝜇 ∈ 𝐴𝐴, such that ∃𝑒𝑒 ∈ 𝐴𝐴, 𝜇𝜇 ∗ 𝑒𝑒 = 𝑒𝑒 ∗ 𝜇𝜇 = 𝜇𝜇, where 𝑒𝑒 is called the rough unit   

element of rough group 𝐴𝐴. 
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Definition 1.2  Let (𝐹𝐹, 𝜃𝜃) be an approximation space and ∗ be a binary operation on 𝐹𝐹. 𝐴𝐴 ⊂ 𝐹𝐹 
is called a rough group if the following properties are satisfied: 

𝑖𝑖) ∀𝜇𝜇, 𝜗𝜗 ∈ 𝐴𝐴, 𝜇𝜇 ∗  𝜗𝜗 ∈ 𝐴𝐴 
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𝑖𝑖𝑖𝑖𝑖𝑖) ∀𝜇𝜇 ∈ 𝐴𝐴, such that ∃𝑒𝑒 ∈ 𝐴𝐴, 𝜇𝜇 ∗ 𝑒𝑒 = 𝑒𝑒 ∗ 𝜇𝜇 = 𝜇𝜇, where 𝑒𝑒 is called the rough unit   

element of rough group 𝐴𝐴. 

𝑖𝑖𝑖𝑖) ∀𝜇𝜇 ∈ 𝐴𝐴, ∃𝜌𝜌 ∈ 𝐴𝐴 ∋ 𝜇𝜇 ∗ 𝜌𝜌 = 𝜌𝜌 ∗ 𝜇𝜇 = 𝑒𝑒, where 𝜌𝜌 is said the rough inverse element of  

𝜇𝜇 in 𝐴𝐴, we denote it by 𝜇𝜇−1 [7,8].  

Theorem 1.1  If 𝐵𝐵 is a rough subgroup of rough group 𝐴𝐴, the following properties are satisfied: 

𝑖𝑖) ∀𝜃𝜃, 𝜗𝜗 ∈ 𝐵𝐵, 𝜃𝜃 ∗ 𝜗𝜗 ∈ 𝐵𝐵. 

𝑖𝑖𝑖𝑖) ∀𝜃𝜃 ∈ 𝐵𝐵,  𝜃𝜃−1 ∈ 𝐵𝐵 [7,8]. 

Definition 1.3  Let (𝐺𝐺1,∗) and (𝐺𝐺2, ∎) be two rough groups. If there exists a surjective function 
𝜑𝜑 ∶  G1 → G2  such that 𝜑𝜑(𝑥𝑥 ∗ 𝑦𝑦) = 𝜑𝜑(𝑥𝑥)∎𝜑𝜑(𝑦𝑦)  for ∀ 𝑥𝑥, 𝑦𝑦 ∈ G1  , then 𝜑𝜑  is called a rough 
group homomorphism and the rough groups 𝐺𝐺1 and 𝐺𝐺2 are called rough homomorphic groups. 

Definition 1.4  Let ℛ is a rough set. Define the operation in ℛ as "⊕" and "⊗" are addition 
and multiplication in ℛ, respectively. Then, (ℛ, ⊕,⊗) triple is said to be a rough ring if all 
condition below are satisfied: 

𝑖𝑖) (ℛ, ⊕) is a rough commutative group, 

𝑖𝑖𝑖𝑖) (ℛ, ⊗) is a rough semigroup or ℛ satisfied associative property, 

𝑖𝑖𝑖𝑖𝑖𝑖) For every  𝜃𝜃, 𝜗𝜗, 𝜇𝜇 ∈ ℛ, then 𝜃𝜃 ⊗ ( 𝜗𝜗 ⊕ 𝜇𝜇) = 𝜃𝜃 ⊗ 𝜗𝜗 ⊕ 𝜃𝜃 ⊗ 𝜇𝜇  and (𝜃𝜃 ⊕ 𝜗𝜗) ⊗ 𝜇𝜇  = 𝜃𝜃 ⊗
𝜇𝜇 ⊕ 𝜗𝜗 ⊗ 𝜇𝜇 holds in ℛ [9]. 

Definition 1.5  Let ℛ be rough ring and Ρ ⊆ ℛ. Ρ is said to be a rough subring of ℛ if Ρ is a 
rough ring with the same operation as ℛ [9]. 

Theorem 1.2  Let 𝐵𝐵 ≠ ∅ is a rough subset of a rough ring ℛ. 𝐵𝐵 is called a rough subring of ℛ 
if and only if every 𝑏𝑏1, 𝑏𝑏2 ∈ 𝐵𝐵 the following condition is satisfied:  

𝑖𝑖) For ∀𝑏𝑏1, 𝑏𝑏2 ∈ 𝐵𝐵, 𝑏𝑏1 ⊕ (−𝑏𝑏2) ∈ 𝐵𝐵, 

𝑖𝑖𝑖𝑖) For ∀𝑏𝑏1, 𝑏𝑏2 ∈ 𝐵𝐵, 𝑏𝑏1 ⊗ 𝑏𝑏2 ∈ 𝐵𝐵 [9]. 

Definition 1.6  Let (ℛ,⊕,⊗) be a rough ring and 𝔇𝔇 ≠ ∅ is rough subset of ℛ. 𝔇𝔇 is called rough 
ideal of ℛ if:  

𝑖𝑖) For ∀𝒹𝒹1, 𝒹𝒹2 ∈ 𝔇𝔇, 𝒹𝒹1 ⊕ (−𝒹𝒹2) ∈ 𝔇𝔇,  

𝑖𝑖𝑖𝑖) For ∀𝒹𝒹 ∈ 𝔇𝔇 and ∀𝓇𝓇 ∈ ℛ, 𝒹𝒹 ⊗ 𝓇𝓇, 𝓇𝓇 ⊗ 𝒹𝒹 ∈ 𝔇𝔇 [9]. 

Definition 1.7  [9] Let (ℛ,⊕,⊗) be a rough ring and 𝔇𝔇 ⊆ ℛ. A subset 𝔇𝔇 is said to be left-rough 
ideal in ℛ if 

𝑖𝑖) For ∀𝒹𝒹1, 𝒹𝒹2 ∈ 𝔇𝔇, 𝒹𝒹1 ⊕ (−𝒹𝒹2) ∈ 𝔇𝔇 

𝑖𝑖𝑖𝑖) For ∀𝒹𝒹 ∈ 𝔇𝔇 and ∀𝓇𝓇 ∈ ℛ, 𝓇𝓇 ⊗ 𝒹𝒹 ∈ 𝔇𝔇. 
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A subset 𝔇𝔇 is said to be right-rough ideal in ℛ if 

𝑖𝑖) For ∀𝒹𝒹1, 𝒹𝒹2 ∈ 𝔇𝔇, 𝒹𝒹1 ⊕ (−𝒹𝒹2) ∈ 𝔇𝔇 

𝑖𝑖𝑖𝑖) For ∀𝒹𝒹 ∈ 𝔇𝔇 and ∀𝓇𝓇 ∈ ℛ, 𝒹𝒹 ⊗ 𝓇𝓇 ∈ 𝔇𝔇. 

Example 1.1  Let 𝐹𝐹 = ℤ10. For every 𝑥𝑥1, 𝑥𝑥2 ∈ 𝐹𝐹, define an equivalence relation 𝜃𝜃 = 𝑥𝑥1 − 𝑥𝑥2 =
2𝑘𝑘, 𝑘𝑘 ∈ ℝ. Then, the equivalence class of 𝐹𝐹 is 

𝐹𝐹/𝜃𝜃 = { {0, 2, 4, 6, 8 }, {1, 3, 5, 7, 9}} 

Let ℛ = {0, 1, 2, 3, 4} = ℤ5. Then we obtain lower approximation and upper approximation of 

ℛ are ℛ = ∅ and ℛ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = ℤ10, respectively. Because 𝐵𝐵𝐵𝐵𝐵𝐵(ℛ) ≠ ∅, we 
can say that ℛ is a rough set. Morever, it is clear that ℛ is a rough ring.  

Suppose that 𝔇𝔇 = {0, 1, 4} ⊆ ℛ. Thus, 𝔇𝔇 = ∅ and 𝔇𝔇 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = ℤ10. Since 
𝔇𝔇 − 𝔇𝔇 ≠ ∅, 𝔇𝔇 is rough set. Now let's show that 𝔇𝔇 is a rough ideal.  

𝑖𝑖) For ∀𝒹𝒹1, 𝒹𝒹2 ∈ 𝔇𝔇, 𝒹𝒹1 ⊕ (−𝒹𝒹2) ∈ 𝔇𝔇 

𝑖𝑖𝑖𝑖) For ∀𝒹𝒹 ∈ 𝔇𝔇 and ∀𝓇𝓇 ∈ ℛ, 𝒹𝒹 ⊗ 𝓇𝓇, 𝓇𝓇 ⊗ 𝒹𝒹 ∈ 𝔇𝔇. 

Since conditions 𝑖𝑖) and 𝑖𝑖𝑖𝑖) above are hold, it is clear that 𝔇𝔇 is the rough ideal of ℛ. 

2.ROUGH QUOTIENT RINGS 

In this section, we study rough quotient rings using rough rings and rough ideals. 

Theorem 2.1  If ℛ is a rough ring and 𝔇𝔇 is a rough ideal of ℛ and 𝜃𝜃, 𝜗𝜗 ∈ ℛ, the relation ∽ 
defined as 

𝜃𝜃 ∽ 𝜗𝜗 ⟺  𝜃𝜃 ⊕ (−𝜗𝜗) ∈  𝔇𝔇 

is an equivalence relation with respect to binary operations on ℛ. The equivalence classes 
obtained by this relation are right and left cosets. The set of equivalence classes is denoted by

ℛ/𝔇𝔇 = { 𝜃𝜃 ⊕ 𝔇𝔇 ∶  𝜃𝜃 ∈  ℛ } 
Theorem 2.2 Let ℛ be a rough ring and 𝔇𝔇 be a rough ideal of ℛ. For ∀ 𝜃𝜃 ⊕ 𝔇𝔇 , 𝜗𝜗 ⊕ 𝔇𝔇  ∈
 ℛ/𝔇𝔇  

(𝜃𝜃 ⊕ 𝔇𝔇) ⊕ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊕ 𝜗𝜗) ⊕ 𝔇𝔇 

(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ 𝔇𝔇 

the structure (ℛ/𝔇𝔇,⊕,⊗) defined by addition and multiplication operations is a rough ring. 
Proof.  1) Let us show that the structure (ℛ/𝔇𝔇,⊕)  is a commutative rough group. For ∀ 𝜃𝜃 ⊕
𝔇𝔇 , 𝜗𝜗 ⊕ 𝔇𝔇, 𝜇𝜇 ⊕ 𝔇𝔇 ∈  ℛ/𝔇𝔇, it is defined by ℛ/𝔇𝔇 = { 𝜃𝜃 ⊕ 𝔇𝔇 ∶  𝜃𝜃 ∈  ℛ }. 
𝑖𝑖) Since ℛ is a rough ring,  (𝜃𝜃 ⊕ 𝔇𝔇) ⊕ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊕ 𝜗𝜗) ⊕ 𝔇𝔇 ∈ ℛ/𝔇𝔇. 
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A subset 𝔇𝔇 is said to be right-rough ideal in ℛ if 

𝑖𝑖) For ∀𝒹𝒹1, 𝒹𝒹2 ∈ 𝔇𝔇, 𝒹𝒹1 ⊕ (−𝒹𝒹2) ∈ 𝔇𝔇 

𝑖𝑖𝑖𝑖) For ∀𝒹𝒹 ∈ 𝔇𝔇 and ∀𝓇𝓇 ∈ ℛ, 𝒹𝒹 ⊗ 𝓇𝓇 ∈ 𝔇𝔇. 

Example 1.1  Let 𝐹𝐹 = ℤ10. For every 𝑥𝑥1, 𝑥𝑥2 ∈ 𝐹𝐹, define an equivalence relation 𝜃𝜃 = 𝑥𝑥1 − 𝑥𝑥2 =
2𝑘𝑘, 𝑘𝑘 ∈ ℝ. Then, the equivalence class of 𝐹𝐹 is 

𝐹𝐹/𝜃𝜃 = { {0, 2, 4, 6, 8 }, {1, 3, 5, 7, 9}} 

Let ℛ = {0, 1, 2, 3, 4} = ℤ5. Then we obtain lower approximation and upper approximation of 

ℛ are ℛ = ∅ and ℛ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = ℤ10, respectively. Because 𝐵𝐵𝐵𝐵𝐵𝐵(ℛ) ≠ ∅, we 
can say that ℛ is a rough set. Morever, it is clear that ℛ is a rough ring.  

Suppose that 𝔇𝔇 = {0, 1, 4} ⊆ ℛ. Thus, 𝔇𝔇 = ∅ and 𝔇𝔇 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = ℤ10. Since 
𝔇𝔇 − 𝔇𝔇 ≠ ∅, 𝔇𝔇 is rough set. Now let's show that 𝔇𝔇 is a rough ideal.  

𝑖𝑖) For ∀𝒹𝒹1, 𝒹𝒹2 ∈ 𝔇𝔇, 𝒹𝒹1 ⊕ (−𝒹𝒹2) ∈ 𝔇𝔇 

𝑖𝑖𝑖𝑖) For ∀𝒹𝒹 ∈ 𝔇𝔇 and ∀𝓇𝓇 ∈ ℛ, 𝒹𝒹 ⊗ 𝓇𝓇, 𝓇𝓇 ⊗ 𝒹𝒹 ∈ 𝔇𝔇. 

Since conditions 𝑖𝑖) and 𝑖𝑖𝑖𝑖) above are hold, it is clear that 𝔇𝔇 is the rough ideal of ℛ. 

2.ROUGH QUOTIENT RINGS 

In this section, we study rough quotient rings using rough rings and rough ideals. 

Theorem 2.1  If ℛ is a rough ring and 𝔇𝔇 is a rough ideal of ℛ and 𝜃𝜃, 𝜗𝜗 ∈ ℛ, the relation ∽ 
defined as 

𝜃𝜃 ∽ 𝜗𝜗 ⟺  𝜃𝜃 ⊕ (−𝜗𝜗) ∈  𝔇𝔇 

is an equivalence relation with respect to binary operations on ℛ. The equivalence classes 
obtained by this relation are right and left cosets. The set of equivalence classes is denoted by

ℛ/𝔇𝔇 = { 𝜃𝜃 ⊕ 𝔇𝔇 ∶  𝜃𝜃 ∈  ℛ } 
Theorem 2.2 Let ℛ be a rough ring and 𝔇𝔇 be a rough ideal of ℛ. For ∀ 𝜃𝜃 ⊕ 𝔇𝔇 , 𝜗𝜗 ⊕ 𝔇𝔇  ∈
 ℛ/𝔇𝔇  

(𝜃𝜃 ⊕ 𝔇𝔇) ⊕ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊕ 𝜗𝜗) ⊕ 𝔇𝔇 

(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ 𝔇𝔇 

the structure (ℛ/𝔇𝔇,⊕,⊗) defined by addition and multiplication operations is a rough ring. 
Proof.  1) Let us show that the structure (ℛ/𝔇𝔇,⊕)  is a commutative rough group. For ∀ 𝜃𝜃 ⊕
𝔇𝔇 , 𝜗𝜗 ⊕ 𝔇𝔇, 𝜇𝜇 ⊕ 𝔇𝔇 ∈  ℛ/𝔇𝔇, it is defined by ℛ/𝔇𝔇 = { 𝜃𝜃 ⊕ 𝔇𝔇 ∶  𝜃𝜃 ∈  ℛ }. 
𝑖𝑖) Since ℛ is a rough ring,  (𝜃𝜃 ⊕ 𝔇𝔇) ⊕ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊕ 𝜗𝜗) ⊕ 𝔇𝔇 ∈ ℛ/𝔇𝔇. 

𝑖𝑖𝑖𝑖) The associative property is provided for ℛ/𝔇𝔇. 
𝑖𝑖𝑖𝑖𝑖𝑖) There exists (0 ⊕ 𝔇𝔇) ∈ ℛ/𝔇𝔇 such that (𝜃𝜃 ⊕ 𝔇𝔇) ⊕ (0 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊕ 0) ⊕ 𝔇𝔇 = (𝜃𝜃 ⊕
𝔇𝔇). 

𝑖𝑖𝑖𝑖) There exists ((−𝜃𝜃) ⊕ 𝔇𝔇) ∈  ℛ/𝔇𝔇 such that (𝜃𝜃 ⊕ 𝔇𝔇) ⊕ ((−𝜃𝜃) ⊕ 𝔇𝔇) = (0 ⊕ 𝔇𝔇). 

𝑣𝑣) (𝜃𝜃 ⊕ 𝔇𝔇) ⊕ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊕ 𝜗𝜗) ⊕ 𝔇𝔇 

                                          = (𝜗𝜗 ⊕ 𝜃𝜃) ⊕ 𝔇𝔇 ∈ ℛ/𝔇𝔇. 

Therefore, the structure (ℛ/𝔇𝔇,⊕)   is a commutative rough group. 

2) Let us show that the associative property of the structure (ℛ/𝔇𝔇,⊗ )  is also satisfied in ℛ/𝔇𝔇. 

Since ℛ is a rough ring,  

(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ [(𝜗𝜗 ⊕ 𝔇𝔇) ⊗ (𝜇𝜇 ⊕ 𝔇𝔇)] = (𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜗𝜗 ⊗ 𝜇𝜇) ⊕ 𝔇𝔇 

                                                            = (𝜃𝜃 ⊗ 𝜗𝜗 ⊗ 𝜇𝜇) ⊕ 𝔇𝔇 

                                                             = [(𝜃𝜃 ⊗ 𝜗𝜗) ⊗ 𝜇𝜇] ⊕ 𝔇𝔇 = (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ 𝔇𝔇 ⊗ (𝜇𝜇 ⊕ 𝔇𝔇) 

                                                            = [(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜗𝜗 ⊕ 𝔇𝔇)] ⊗ (𝜇𝜇 ⊕ 𝔇𝔇) ∈ ℛ/𝔇𝔇. 

3) Let us show that the left and right distributive properties of the operation ⊗ on the operation  
⊕ are also satisfied in ℛ/𝔇𝔇.  

Since ℛ is a rough ring,  

(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ [(𝜗𝜗 ⊕ 𝔇𝔇) ⊕ (𝜇𝜇 ⊕ 𝔇𝔇)] = [(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜗𝜗 ⊕ 𝔇𝔇)] ⊕ [(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜇𝜇 ⊕ 𝔇𝔇)] 

                                                            = [(𝜃𝜃 ⊗ 𝜗𝜗) ⊕ 𝔇𝔇] ⊕ [(𝜃𝜃 ⊗ 𝜇𝜇) ⊕ 𝔇𝔇] ∈ ℛ/𝔇𝔇. 

Thus, multiplication is distributive from the left over addition. Similarly, multiplication is 
distributive from the right over addition.  

Therefore, the structure (ℛ/𝔇𝔇,⊕,⊗) is a rough ring. 

Remark 2.1 If the rough ring ℛ is commutative and has identity, then the rough ring ℛ/𝔇𝔇 is 
also commutative and a rough ring with identity for ℛ ≠ 𝔇𝔇. 

Proof  For ∀ 𝜃𝜃 ⊕ 𝔇𝔇 , 𝜗𝜗 ⊕ 𝔇𝔇 ∈  ℛ/𝔇𝔇, since ℛ is a rough ring  

(𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜗𝜗 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ 𝔇𝔇 

                                     = (𝜗𝜗 ⊗ 𝜃𝜃) ⊕ 𝔇𝔇  ∈ ℛ/𝔇𝔇 . Then, the rough ring (ℛ/𝔇𝔇,⊕,⊗)  is 
commutative.  
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Let ℛ ≠ 𝔇𝔇 and let the identity of the rough ring ℛ be 1 with respect to multiplication. For 
∀ 𝜃𝜃 ⊕ 𝔇𝔇  ∈  ℛ/𝔇𝔇 , since (𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (1 ⊕ 𝔇𝔇) = (1 ⊕ 𝔇𝔇) ⊗ (𝜃𝜃 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊗ 1) ⊕ 𝔇𝔇 =
(𝜃𝜃 ⊕ 𝔇𝔇) is a identity element. Thus, the rough ring (ℛ/𝔇𝔇,⊕,⊗) has identity. 

Definition 2.1 Let ℛ be a rough ring and 𝔇𝔇 be a rough ideal of ℛ. The rough ring (ℛ/𝔇𝔇,⊕,⊗)  
is called a rough quotient ring. 

Example 2.1  From Example 1.1, for 𝐹𝐹 = ℤ10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} universal set, 𝐹𝐹/𝜃𝜃 =
{ {0, 2, 4, 6, 8 }, {1, 3, 5, 7, 9}}  equivalence classes, ℛ = {0, 1, 2, 3, 4} = ℤ5  rough ring, 𝔇𝔇 =
{0, 1, 4} ⊆ ℛ rough ideal, ℛ/𝔇𝔇 = {0 ⊕ 𝔇𝔇} and ℛ/𝔇𝔇 = {0 ⊕ 𝔇𝔇}. Thus,  
1) (ℛ/𝔇𝔇,⊕) is a commutative rough group.  
2) The structure (ℛ/𝔇𝔇,⊗) satisfies the associative property in ℛ/𝔇𝔇.  
3) The left and right distributive properties of the operation ⊗ on the operation  ⊕ are also 
satisfied in ℛ/𝔇𝔇. 

3.HOMOMORPHISMS OF ROUGH RINGS 

In this section, homomorphisms, properties and theorems of rough rings are given using 
homomorphisms of rough groups. 

Definition 3.1 For rough rings (ℛ1,⊕,⊗) and (ℛ2,⊕,⊗), the surjective map 𝜑𝜑 ∶  ℛ1 → ℛ2 is 
called a rough ring homomorphism on 𝜑𝜑 if the following conditions are satisfied. 

𝑖𝑖) For ∀ 𝜃𝜃, 𝜗𝜗 ∈ ℛ1 , 𝜑𝜑(𝜃𝜃 ⊕ 𝜗𝜗) = 𝜑𝜑(𝜃𝜃) ⊕ 𝜑𝜑(𝜗𝜗). 

𝑖𝑖𝑖𝑖) For ∀ 𝜃𝜃, 𝜗𝜗 ∈ ℛ1 , 𝜑𝜑(𝜃𝜃 ⊗ 𝜗𝜗) = 𝜑𝜑(𝜃𝜃) ⊗ 𝜑𝜑(𝜗𝜗). 

 Since 𝜑𝜑 ∶  ℛ1 → ℛ2  is a rough ring homomorphism surjective map, ℛ2  is called a 
homomorphic image of ℛ1. 

Definition 3.2 If the rough ring homomorphism 𝜑𝜑 ∶  ℛ1 → ℛ2 is a injective map, then 𝜑𝜑 is 
called a rough ring isomorphism. Also, the rough rings ℛ1 and ℛ2 are said to be isomorphic 
and are denoted by ℛ1 ≅ ℛ2. 

Theorem 3.1 If 𝜑𝜑 ∶  ℛ1 → ℛ2 is rough ring homomorphism, then  

𝑖𝑖) 𝜑𝜑(0𝑅𝑅1) = 0𝑅𝑅2  

𝑖𝑖𝑖𝑖) For ∀ 𝜃𝜃 ∈ ℛ1, 𝜑𝜑(-𝜃𝜃) = − 𝜑𝜑(𝜃𝜃). 

Proof  𝑖𝑖) 𝜑𝜑(0𝑅𝑅1) = 𝜑𝜑(0𝑅𝑅1) ⊕ 0𝑅𝑅2 

                             =  𝜑𝜑(0𝑅𝑅1) ⊕  𝜑𝜑(0𝑅𝑅1) ⊕ (−𝜑𝜑(0𝑅𝑅1)) 

                             =  𝜑𝜑(0𝑅𝑅1 ⊕ 0𝑅𝑅1) ⊕ (−𝜑𝜑(0𝑅𝑅1)) 



2419th International Conference on Computational Mathematics and Engineering Sciences
17 – 19 May 2025, Diyarbakır – Türkiye

Let ℛ ≠ 𝔇𝔇 and let the identity of the rough ring ℛ be 1 with respect to multiplication. For 
∀ 𝜃𝜃 ⊕ 𝔇𝔇  ∈  ℛ/𝔇𝔇 , since (𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (1 ⊕ 𝔇𝔇) = (1 ⊕ 𝔇𝔇) ⊗ (𝜃𝜃 ⊕ 𝔇𝔇) = (𝜃𝜃 ⊗ 1) ⊕ 𝔇𝔇 =
(𝜃𝜃 ⊕ 𝔇𝔇) is a identity element. Thus, the rough ring (ℛ/𝔇𝔇,⊕,⊗) has identity. 

Definition 2.1 Let ℛ be a rough ring and 𝔇𝔇 be a rough ideal of ℛ. The rough ring (ℛ/𝔇𝔇,⊕,⊗)  
is called a rough quotient ring. 

Example 2.1  From Example 1.1, for 𝐹𝐹 = ℤ10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} universal set, 𝐹𝐹/𝜃𝜃 =
{ {0, 2, 4, 6, 8 }, {1, 3, 5, 7, 9}}  equivalence classes, ℛ = {0, 1, 2, 3, 4} = ℤ5  rough ring, 𝔇𝔇 =
{0, 1, 4} ⊆ ℛ rough ideal, ℛ/𝔇𝔇 = {0 ⊕ 𝔇𝔇} and ℛ/𝔇𝔇 = {0 ⊕ 𝔇𝔇}. Thus,  
1) (ℛ/𝔇𝔇,⊕) is a commutative rough group.  
2) The structure (ℛ/𝔇𝔇,⊗) satisfies the associative property in ℛ/𝔇𝔇.  
3) The left and right distributive properties of the operation ⊗ on the operation  ⊕ are also 
satisfied in ℛ/𝔇𝔇. 

3.HOMOMORPHISMS OF ROUGH RINGS 

In this section, homomorphisms, properties and theorems of rough rings are given using 
homomorphisms of rough groups. 

Definition 3.1 For rough rings (ℛ1,⊕,⊗) and (ℛ2,⊕,⊗), the surjective map 𝜑𝜑 ∶  ℛ1 → ℛ2 is 
called a rough ring homomorphism on 𝜑𝜑 if the following conditions are satisfied. 

𝑖𝑖) For ∀ 𝜃𝜃, 𝜗𝜗 ∈ ℛ1 , 𝜑𝜑(𝜃𝜃 ⊕ 𝜗𝜗) = 𝜑𝜑(𝜃𝜃) ⊕ 𝜑𝜑(𝜗𝜗). 

𝑖𝑖𝑖𝑖) For ∀ 𝜃𝜃, 𝜗𝜗 ∈ ℛ1 , 𝜑𝜑(𝜃𝜃 ⊗ 𝜗𝜗) = 𝜑𝜑(𝜃𝜃) ⊗ 𝜑𝜑(𝜗𝜗). 

 Since 𝜑𝜑 ∶  ℛ1 → ℛ2  is a rough ring homomorphism surjective map, ℛ2  is called a 
homomorphic image of ℛ1. 

Definition 3.2 If the rough ring homomorphism 𝜑𝜑 ∶  ℛ1 → ℛ2 is a injective map, then 𝜑𝜑 is 
called a rough ring isomorphism. Also, the rough rings ℛ1 and ℛ2 are said to be isomorphic 
and are denoted by ℛ1 ≅ ℛ2. 

Theorem 3.1 If 𝜑𝜑 ∶  ℛ1 → ℛ2 is rough ring homomorphism, then  

𝑖𝑖) 𝜑𝜑(0𝑅𝑅1) = 0𝑅𝑅2  

𝑖𝑖𝑖𝑖) For ∀ 𝜃𝜃 ∈ ℛ1, 𝜑𝜑(-𝜃𝜃) = − 𝜑𝜑(𝜃𝜃). 

Proof  𝑖𝑖) 𝜑𝜑(0𝑅𝑅1) = 𝜑𝜑(0𝑅𝑅1) ⊕ 0𝑅𝑅2 

                             =  𝜑𝜑(0𝑅𝑅1) ⊕  𝜑𝜑(0𝑅𝑅1) ⊕ (−𝜑𝜑(0𝑅𝑅1)) 

                             =  𝜑𝜑(0𝑅𝑅1 ⊕ 0𝑅𝑅1) ⊕ (−𝜑𝜑(0𝑅𝑅1)) 

                             =  𝜑𝜑(0𝑅𝑅1) ⊕ (−𝜑𝜑(0𝑅𝑅1)) = 0𝑅𝑅2. 

𝑖𝑖𝑖𝑖) For ∀ 𝜃𝜃 ∈ ℛ1 , 𝜑𝜑(𝜃𝜃) ⊕ 𝜑𝜑(-𝜃𝜃) = 𝜑𝜑(𝜃𝜃 ⊕ (-𝜃𝜃)) 

                                                       = 𝜑𝜑(0𝑅𝑅1) = 0𝑅𝑅2. 

Since (ℛ2,⊕)  is a rough group and the inverse of an element in a rough group is unique, we 
obtain 𝜑𝜑(-𝜃𝜃) = − 𝜑𝜑(𝜃𝜃). 

Theorem 3.2 Let 𝜑𝜑 ∶  ℛ1 → ℛ2 be a rough ring homomorphism.  

𝑖𝑖) If ℛ1 is a commutative rough ring, then ℛ2 is also a commutative rough ring. 

𝑖𝑖𝑖𝑖) If ℛ1 is a unitary rough ring with unit 1𝑅𝑅1, then ℛ2 is a unitary rough ring with unit 1𝑅𝑅2and 
𝜑𝜑(1𝑅𝑅1) = 1𝑅𝑅2.  

𝑖𝑖𝑖𝑖𝑖𝑖) If ℛ1 is a rough ring with unity and 𝜃𝜃 ∈ ℛ1 has a multiplicative inverse in ℛ1, then 𝜑𝜑(𝜃𝜃) 
also has a multiplicative inverse in ℛ2 and 𝜑𝜑(𝜃𝜃−1) = [𝜑𝜑(𝜃𝜃)]−1. 

Proof  𝑖𝑖)  Let ℛ1  be a commutative rough ring. Since 𝜑𝜑 ∶  ℛ1 → ℛ2  is a rough ring 
homomorphism,  

For ∀𝛼𝛼 ∈ ℛ2, there exists 𝜃𝜃 ∈ ℛ1 such that 𝜑𝜑(𝜃𝜃) = 𝛼𝛼. 

For ∀𝛽𝛽 ∈ ℛ2, there exists 𝜗𝜗 ∈ ℛ1 such that 𝜑𝜑(𝜗𝜗) = 𝛽𝛽. 

𝛼𝛼 ⊗  𝛽𝛽 = 𝜑𝜑(𝜃𝜃) ⊗ 𝜑𝜑(𝜗𝜗) = 𝜑𝜑 (𝜃𝜃 ⊗ 𝜗𝜗) = 𝜑𝜑 (𝜗𝜗 ⊗ 𝜃𝜃) = 𝜑𝜑(𝜗𝜗) ⊗ 𝜑𝜑(𝜃𝜃) =  𝛽𝛽 ⊗ 𝛼𝛼 is obtained. 

Thus, the rough ring ℛ2 is commutative. 

𝑖𝑖𝑖𝑖) Let ℛ1 be a unitary rough ring with unit 1𝑅𝑅1. Since 𝜑𝜑 is a rough ring homomorphism, for 
∀𝛼𝛼 ∈ ℛ2, there exists 𝜃𝜃 ∈ ℛ1 such that 𝜑𝜑(𝜃𝜃) = 𝛼𝛼.  

𝜑𝜑(1𝑅𝑅1) ⊗  𝛼𝛼 = 𝜑𝜑(1𝑅𝑅1) ⊗ 𝜑𝜑(𝜃𝜃) = 𝜑𝜑(1𝑅𝑅1 ⊗ 𝜃𝜃) = 𝜑𝜑(𝜃𝜃) = 𝛼𝛼 is obtained. 

Likewise, 𝛼𝛼 ⊗  𝜑𝜑(1𝑅𝑅1) = 𝜑𝜑(𝜃𝜃) ⊗  𝜑𝜑(1𝑅𝑅1) =  𝜑𝜑(𝜃𝜃 ⊗ 1𝑅𝑅1) =  𝜑𝜑(𝜃𝜃) = 𝛼𝛼. 

Since 𝜑𝜑(1𝑅𝑅1) ⊗  𝛼𝛼 =  𝛼𝛼 ⊗  𝜑𝜑(1𝑅𝑅1) for ∀𝛼𝛼 ∈ ℛ2,  𝜑𝜑(1𝑅𝑅1) is the unit for the rough ring ℛ2, 
and since there is only one unit element in the rough ring, 𝜑𝜑(1𝑅𝑅1) = 1𝑅𝑅2is obtained for the unit 
element 1𝑅𝑅2 of ℛ2. 

𝑖𝑖𝑖𝑖𝑖𝑖) Let ℛ1 be a rough ring with unity and let 𝜃𝜃−1 ∈ ℛ1 be for 𝜃𝜃 ∈ ℛ1. 

𝜑𝜑(1𝑅𝑅1) = 𝜑𝜑(𝜃𝜃 ⊗ 𝜃𝜃−1) = 𝜑𝜑(𝜃𝜃) ⊗ 𝜑𝜑(𝜃𝜃−1) = 1𝑅𝑅2 and  

𝜑𝜑(1𝑅𝑅1) = 𝜑𝜑(𝜃𝜃−1 ⊗ 𝜃𝜃) = 𝜑𝜑(𝜃𝜃−1) ⊗ 𝜑𝜑(𝜃𝜃) = 1𝑅𝑅2 is obtained.  
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Hence, since 𝜑𝜑(𝜃𝜃)  ⊗ 𝜑𝜑(𝜃𝜃−1) = 𝜑𝜑(𝜃𝜃−1) ⊗ 𝜑𝜑(𝜃𝜃) = 1𝑅𝑅2 , the inverse of 𝜑𝜑(𝜃𝜃)  becomes 
𝜑𝜑(𝜃𝜃−1). 

Also, since the inverse of 𝜑𝜑(𝜃𝜃) is given by [𝜑𝜑(𝜃𝜃)]−1, we have 𝜑𝜑(𝜃𝜃−1) = [𝜑𝜑(𝜃𝜃)]−1. 

Theorem 3.3 If ℛ  is a rough ring and 0 ≠ 𝜃𝜃 ∈ ℛ ; the map defined as 𝜑𝜑𝜃𝜃: ℛ → ℛ , 𝜗𝜗 ↦
𝜑𝜑𝜃𝜃( 𝜗𝜗) = 𝜃𝜃 ⊗ 𝜗𝜗 is injective if and only if the element 𝜃𝜃 is not a zero divisor of the rough ring 
ℛ. 

Proof  Let ℛ be a rough ring and let 0 ≠ 𝜃𝜃 ∈ ℛ. 

(⟹: )Let the map  𝜑𝜑𝜃𝜃 be injective. For ∀ 𝜗𝜗, 𝜇𝜇 ∈ ℛ, if  𝜑𝜑𝜃𝜃(𝜗𝜗) =  𝜑𝜑𝜃𝜃(𝜇𝜇),  then 𝜗𝜗 = 𝜇𝜇.  

 𝜑𝜑𝜃𝜃(𝜗𝜗) =  𝜑𝜑𝜃𝜃(𝜇𝜇) ⟹  𝜃𝜃 ⊗ 𝜗𝜗 = 𝜃𝜃 ⊗ 𝜇𝜇  

                             ⟹ (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) = (𝜃𝜃 ⊗ 𝜇𝜇) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) 

                             ⟹ 𝜃𝜃(𝜗𝜗 ⊕ −𝜇𝜇) = 0 is written. 

Since 𝜗𝜗 = 𝜇𝜇, we obtain 𝜗𝜗 ⊕ −𝜇𝜇 = 0. Thus, it can be seen that the element 𝜃𝜃 is not a zero 
divisor of the rough ring ℛ. 

(⟸: ) Suppose that the element 𝜃𝜃 is not a zero divisor of the rough ring ℛ. 

 𝜑𝜑𝜃𝜃(𝜗𝜗) =  𝜑𝜑𝜃𝜃(𝜇𝜇) ⟹  𝜃𝜃 ⊗ 𝜗𝜗 = 𝜃𝜃 ⊗ 𝜇𝜇  

                             ⟹ (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) = (𝜃𝜃 ⊗ 𝜇𝜇) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) 

                             ⟹ 𝜃𝜃(𝜗𝜗 ⊕ −𝜇𝜇) = 0 is written.  

                             ⟹ 𝜗𝜗 ⊕ −𝜇𝜇 = 0  

                             ⟹ 𝜗𝜗 = 𝜇𝜇 is obtained. 

Thus, it can be seen that  𝜑𝜑𝜃𝜃 is injective map. 

Definition 3.3  Let 𝜑𝜑 ∶  ℛ1 → ℛ2 be a rough ring homomorphism. The set  

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = {𝜃𝜃 ∈ ℛ1 ∶  𝜑𝜑(𝜃𝜃) = 0𝑅𝑅2} 

is called the kernel of 𝜑𝜑 and the set  

𝐼𝐼𝐼𝐼𝐼𝐼 = { 𝜑𝜑(𝜃𝜃) ∶  𝜃𝜃 ∈ ℛ1} 

is called the image of 𝜑𝜑. 

Theorem 3.4 If 𝜑𝜑 ∶  ℛ1 → ℛ2 is a rough ring homomorphism, then 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is a rough ideal of 
ℛ1. 
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Hence, since 𝜑𝜑(𝜃𝜃)  ⊗ 𝜑𝜑(𝜃𝜃−1) = 𝜑𝜑(𝜃𝜃−1) ⊗ 𝜑𝜑(𝜃𝜃) = 1𝑅𝑅2 , the inverse of 𝜑𝜑(𝜃𝜃)  becomes 
𝜑𝜑(𝜃𝜃−1). 

Also, since the inverse of 𝜑𝜑(𝜃𝜃) is given by [𝜑𝜑(𝜃𝜃)]−1, we have 𝜑𝜑(𝜃𝜃−1) = [𝜑𝜑(𝜃𝜃)]−1. 

Theorem 3.3 If ℛ  is a rough ring and 0 ≠ 𝜃𝜃 ∈ ℛ ; the map defined as 𝜑𝜑𝜃𝜃: ℛ → ℛ , 𝜗𝜗 ↦
𝜑𝜑𝜃𝜃( 𝜗𝜗) = 𝜃𝜃 ⊗ 𝜗𝜗 is injective if and only if the element 𝜃𝜃 is not a zero divisor of the rough ring 
ℛ. 

Proof  Let ℛ be a rough ring and let 0 ≠ 𝜃𝜃 ∈ ℛ. 

(⟹: )Let the map  𝜑𝜑𝜃𝜃 be injective. For ∀ 𝜗𝜗, 𝜇𝜇 ∈ ℛ, if  𝜑𝜑𝜃𝜃(𝜗𝜗) =  𝜑𝜑𝜃𝜃(𝜇𝜇),  then 𝜗𝜗 = 𝜇𝜇.  

 𝜑𝜑𝜃𝜃(𝜗𝜗) =  𝜑𝜑𝜃𝜃(𝜇𝜇) ⟹  𝜃𝜃 ⊗ 𝜗𝜗 = 𝜃𝜃 ⊗ 𝜇𝜇  

                             ⟹ (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) = (𝜃𝜃 ⊗ 𝜇𝜇) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) 

                             ⟹ 𝜃𝜃(𝜗𝜗 ⊕ −𝜇𝜇) = 0 is written. 

Since 𝜗𝜗 = 𝜇𝜇, we obtain 𝜗𝜗 ⊕ −𝜇𝜇 = 0. Thus, it can be seen that the element 𝜃𝜃 is not a zero 
divisor of the rough ring ℛ. 

(⟸: ) Suppose that the element 𝜃𝜃 is not a zero divisor of the rough ring ℛ. 

 𝜑𝜑𝜃𝜃(𝜗𝜗) =  𝜑𝜑𝜃𝜃(𝜇𝜇) ⟹  𝜃𝜃 ⊗ 𝜗𝜗 = 𝜃𝜃 ⊗ 𝜇𝜇  

                             ⟹ (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) = (𝜃𝜃 ⊗ 𝜇𝜇) ⊕ −(𝜃𝜃 ⊗ 𝜇𝜇) 

                             ⟹ 𝜃𝜃(𝜗𝜗 ⊕ −𝜇𝜇) = 0 is written.  

                             ⟹ 𝜗𝜗 ⊕ −𝜇𝜇 = 0  

                             ⟹ 𝜗𝜗 = 𝜇𝜇 is obtained. 

Thus, it can be seen that  𝜑𝜑𝜃𝜃 is injective map. 

Definition 3.3  Let 𝜑𝜑 ∶  ℛ1 → ℛ2 be a rough ring homomorphism. The set  

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = {𝜃𝜃 ∈ ℛ1 ∶  𝜑𝜑(𝜃𝜃) = 0𝑅𝑅2} 

is called the kernel of 𝜑𝜑 and the set  

𝐼𝐼𝐼𝐼𝐼𝐼 = { 𝜑𝜑(𝜃𝜃) ∶  𝜃𝜃 ∈ ℛ1} 

is called the image of 𝜑𝜑. 

Theorem 3.4 If 𝜑𝜑 ∶  ℛ1 → ℛ2 is a rough ring homomorphism, then 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is a rough ideal of 
ℛ1. 

Proof  If 𝜑𝜑 ∶  ℛ1 → ℛ2 is a rough ring homomorphism, then it is clear that 𝜑𝜑(0𝑅𝑅1) = 0𝑅𝑅2 . 
From Definition 3.3 we obtain 0𝑅𝑅1 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ≠ ∅. Let us now show that 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is a 
rough ideal of ℛ1. 

𝑖𝑖) If ∀𝒹𝒹1, 𝒹𝒹2 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, then 𝜑𝜑(𝒹𝒹1) = 0𝑅𝑅2 and 𝜑𝜑(𝒹𝒹2) = 0𝑅𝑅2. 

𝜑𝜑(𝒹𝒹1 ⊕ −𝒹𝒹2) =  𝜑𝜑(𝒹𝒹1) ⊕ −𝜑𝜑(𝒹𝒹2) 

                         = 0𝑅𝑅2 ⊕ −0𝑅𝑅2 = 0𝑅𝑅2is obtained. Thus, it is seen that (𝒹𝒹1 ⊕ −𝒹𝒹2) ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. 

𝑖𝑖𝑖𝑖)  If ∀𝒹𝒹 ∈  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 , then 𝜑𝜑(𝒹𝒹) = 0𝑅𝑅2. For ∀𝓇𝓇 ∈ ℛ , 𝜑𝜑(𝓇𝓇𝒹𝒹) = 𝜑𝜑(𝓇𝓇) ⊗ 𝜑𝜑(𝒹𝒹) = 𝜑𝜑(𝓇𝓇) ⊗
0𝑅𝑅2 = 0𝑅𝑅2 is obtained. Thus, it is seen that 𝓇𝓇𝒹𝒹 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 .  

Likewise, 𝜑𝜑(𝒹𝒹𝓇𝓇) = 𝜑𝜑(𝒹𝒹) ⊗ 𝜑𝜑(𝓇𝓇) = 0𝑅𝑅2 ⊗ 𝜑𝜑(𝓇𝓇) = 0𝑅𝑅2  is obtained. Thus, it is seen that 
𝒹𝒹𝓇𝓇 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 .  

Hence, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is a rough ideal of ℛ1. 

Theorem 3.5 Let ℛ be a rough ring and 𝔇𝔇 be a rough ideal of ℛ. In this case, the map defined 
by  

𝜑𝜑 ∶ ℛ → ℛ/𝔇𝔇 , 𝓇𝓇 ↦ 𝜑𝜑(𝓇𝓇) = 𝓇𝓇 ⊕ 𝔇𝔇 

is a rough ring homomorphism with kernel 𝔇𝔇. 

Proof  For 𝓇𝓇 ⊕ 𝔇𝔇 ∈  , there exists 𝓇𝓇 ∈ ℛ  such that 𝜑𝜑(𝓇𝓇) = 𝓇𝓇 ⊕ 𝔇𝔇 . Thus, 𝜑𝜑  is 
surjective. 

For ∀ 𝜗𝜗, 𝜇𝜇 ∈ ℛ, 𝜑𝜑(𝜃𝜃 ⊕ 𝜗𝜗) = (𝜃𝜃 ⊕ 𝜗𝜗) ⊕ 𝔇𝔇 = (𝜃𝜃 ⊕ 𝔇𝔇) ⊕ (𝜗𝜗 ⊕ 𝔇𝔇) = 𝜑𝜑(𝜃𝜃) ⊕ 𝜑𝜑(𝜗𝜗) and  

𝜑𝜑(𝜃𝜃 ⊗ 𝜗𝜗) = (𝜃𝜃 ⊗ 𝜗𝜗) ⊕ 𝔇𝔇 = (𝜃𝜃 ⊕ 𝔇𝔇) ⊗ (𝜗𝜗 ⊕ 𝔇𝔇) = 𝜑𝜑(𝜃𝜃) ⊗ 𝜑𝜑(𝜗𝜗) is obtained. 

Thus, 𝜑𝜑 is a rough ring homomorphism. It seen that, 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = {𝓇𝓇 ∈ ℛ ∶  𝜑𝜑(𝓇𝓇) = 0 ⊕ 𝔇𝔇}  

           = {𝓇𝓇 ∈ ℛ ∶  𝓇𝓇 ⊕ 𝔇𝔇 = 𝔇𝔇} 

           = {𝓇𝓇 ∈ ℛ ∶  𝓇𝓇 ∈ 𝔇𝔇} = 𝔇𝔇. 

4.CONCLUSIONS 

In this study, rough quotient rings and homomorphisms of rough rings are studied using the 
concepts of rough rings and rough ideals. It is thought that by using this information, theorems 
of isomorphisms of rough rings and transformations between rough fields and rough fields can 
be defined. 
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Abstract  

Soft set theory has brought a new perspective to contemporary mathematics. In this 

way, new analyzes have been developed regarding the complex structure of contemporary 

problems that are incomplete and uncertain. The concept of covering space corresponds to the 

concept of groupoid, which is an algebraic structure, and due to this feature, it has found a 

wide field of study in topology In this study, the concept of soft set and the concept of fibre, 

which finds a place in covering spaces, are discussed together and various concepts such as 

soft quotient map, soft fibre, and soft fibre groupoid, each of which are original concepts, are 

introduced. 

Keywords: Soft set, Soft groupoid, Soft quotient map, Concept of fibre, Concept of soft fibre. 

 

1.INTRODUCTION 

Complex and uncertain problems in modern life have entered the fields of study of both 

thinkers and scientists dealing with mathematics and logic. Classical methods of mathematics 

have been inadequate to solve some uncertainty problems of the modern age. In order to 

overcome this situation, various set theories, starting with G. Cantor, have added a new 

perspective to mathematics, produced themselves in a new language and offered new and 

practical solutions to problems related to uncertainty situations. 

D. A. Molodtsov put forward the "Soft set" theory in 1999, which gave a new perspective to 

the concepts of completeness and precision in mathematics [1]. This theory proposes more 

specific and easier to classify solutions by parameterizing some incomplete and imprecise 
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concepts encountered in practical life. After soft set theory was introduced, it was studied by 

many mathematicians from topological, categorical and algebraic perspectives [2-16]. 

The concept of covering space is remarkable in many respects. First of all, this concept allows 

obtaining the 𝑋̃𝑋 space, which has a simpler structure than a given 𝑋𝑋 space. More importantly, 

this concept corresponds to the concept of groupoid, which is an algebraic structure, and due 

to this feature, it has found a wide field of study in topology. [17-22]. 

In this study, the concept of soft set and the concept of fibre, which finds a place in covering 

spaces, are discussed together and various concepts such as soft quotient map, soft fibre, and 

soft fibre groupoid, each of which are original concepts, are introduced. 

2. SOFT SETS 

Soft set theory defined by D.A. Molodtsov has found a wide place in contemporary 

mathematics. After the introduction of soft set theory, which gave a new perspective to the 

concepts of completeness and precision in mathematics, it was studied by many 

mathematicians from topological, categorical and algebraic perspectives. [2-16]. 

   Let the set of all subsets of 𝑋𝑋 be 𝑃𝑃(𝑋𝑋)  and 𝐴𝐴 ⊂  𝐸𝐸, where 𝑋𝑋 is a universal set and 𝐸𝐸 is the 

set of parameters. Thus, the definition of a soft set is given as follows. 

Definition 2.1. The pair (𝐹𝐹, 𝐴𝐴) given with any 𝐹𝐹 ∶ 𝐴𝐴          𝑃𝑃(𝑋𝑋) transformation is called a soft 

set on 𝑋𝑋 [1]. For the above definition, it can be said that a soft set on 𝑋𝑋 is a parameterized 

family of subsets of the universal set 𝑋𝑋. For 𝜃𝜃 ∈ 𝐴𝐴, the 𝐹𝐹(𝜃𝜃 ) family can be defined as a set of 

α approximation elements of the soft set (𝐹𝐹, 𝐴𝐴) [1]. Here, for convenience, a soft set (𝐹𝐹, 𝐴𝐴)  

on 𝑋𝑋 will sometimes be denoted by (𝑋𝑋, 𝐹𝐹, 𝐴𝐴). 

Example 2.1. Let the universal set 𝑋𝑋 be the set of shoes. Also, let the set of E parameters be 

defined as 𝐸𝐸 =  {summer, seasonal, winter, beautiful, comfortable, bright, colorful, 

expensive, cheap}. In this case, a soft set to be defined; will indicate shoes such as summerly 

shoes, seasonal shoes, winterly shoes, beautiful shoes, … etc. 

Suppose there are six shoes in the universal set 𝑋𝑋  = {ℎ1 , ℎ2 , ℎ3 , ℎ4 , ℎ5 , ℎ6}. 

For the parameter set 𝐴𝐴 = {𝑒𝑒1,  𝑒𝑒2 ,  𝑒𝑒3 ,  𝑒𝑒4 , 𝑒𝑒5}, 

𝑒𝑒1  parameter is 'summer', 

𝑒𝑒2 parameter is ‘winter’,  

𝑒𝑒3  parameter is ‘expensive’, 
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concepts encountered in practical life. After soft set theory was introduced, it was studied by 

many mathematicians from topological, categorical and algebraic perspectives [2-16]. 

The concept of covering space is remarkable in many respects. First of all, this concept allows 

obtaining the 𝑋̃𝑋 space, which has a simpler structure than a given 𝑋𝑋 space. More importantly, 

this concept corresponds to the concept of groupoid, which is an algebraic structure, and due 

to this feature, it has found a wide field of study in topology. [17-22]. 

In this study, the concept of soft set and the concept of fibre, which finds a place in covering 

spaces, are discussed together and various concepts such as soft quotient map, soft fibre, and 

soft fibre groupoid, each of which are original concepts, are introduced. 

2. SOFT SETS 

Soft set theory defined by D.A. Molodtsov has found a wide place in contemporary 

mathematics. After the introduction of soft set theory, which gave a new perspective to the 

concepts of completeness and precision in mathematics, it was studied by many 

mathematicians from topological, categorical and algebraic perspectives. [2-16]. 

   Let the set of all subsets of 𝑋𝑋 be 𝑃𝑃(𝑋𝑋)  and 𝐴𝐴 ⊂  𝐸𝐸, where 𝑋𝑋 is a universal set and 𝐸𝐸 is the 

set of parameters. Thus, the definition of a soft set is given as follows. 

Definition 2.1. The pair (𝐹𝐹, 𝐴𝐴) given with any 𝐹𝐹 ∶ 𝐴𝐴          𝑃𝑃(𝑋𝑋) transformation is called a soft 

set on 𝑋𝑋 [1]. For the above definition, it can be said that a soft set on 𝑋𝑋 is a parameterized 

family of subsets of the universal set 𝑋𝑋. For 𝜃𝜃 ∈ 𝐴𝐴, the 𝐹𝐹(𝜃𝜃 ) family can be defined as a set of 

α approximation elements of the soft set (𝐹𝐹, 𝐴𝐴) [1]. Here, for convenience, a soft set (𝐹𝐹, 𝐴𝐴)  

on 𝑋𝑋 will sometimes be denoted by (𝑋𝑋, 𝐹𝐹, 𝐴𝐴). 

Example 2.1. Let the universal set 𝑋𝑋 be the set of shoes. Also, let the set of E parameters be 

defined as 𝐸𝐸 =  {summer, seasonal, winter, beautiful, comfortable, bright, colorful, 

expensive, cheap}. In this case, a soft set to be defined; will indicate shoes such as summerly 

shoes, seasonal shoes, winterly shoes, beautiful shoes, … etc. 

Suppose there are six shoes in the universal set 𝑋𝑋  = {ℎ1 , ℎ2 , ℎ3 , ℎ4 , ℎ5 , ℎ6}. 

For the parameter set 𝐴𝐴 = {𝑒𝑒1,  𝑒𝑒2 ,  𝑒𝑒3 ,  𝑒𝑒4 , 𝑒𝑒5}, 

𝑒𝑒1  parameter is 'summer', 

𝑒𝑒2 parameter is ‘winter’,  

𝑒𝑒3  parameter is ‘expensive’, 

𝑒𝑒4  parameter is ‘beautiful’, 

𝑒𝑒5 parameter is ‘comfortable’ and 

𝐹𝐹(𝑒𝑒1 )  = { ℎ1} 

𝐹𝐹(𝑒𝑒2 )  = { ℎ2 ,ℎ4 } 

𝐹𝐹 (𝑒𝑒3 )  = { ℎ2, ℎ3, ℎ5} 

𝐹𝐹 (𝑒𝑒4 )  = { ℎ1 , ℎ2 , ℎ3, ℎ4, ℎ5} 

𝐹𝐹 (𝑒𝑒5 )  = {ℎ2 , ℎ3, ℎ5, ℎ6}                     

be defines as. Here; 

𝐹𝐹(𝑒𝑒1 )  = {ℎ1} summer shoes, 

𝐹𝐹(𝑒𝑒2 )  = {ℎ2 ,ℎ4} winter shoes,  

𝐹𝐹(𝑒𝑒3 )  = {ℎ2 ,ℎ3 ,ℎ5} expensive shoes,  

𝐹𝐹 (𝑒𝑒4 )  = { ℎ1 , ℎ2 , ℎ3, ℎ4, ℎ5} beautiful shoes,  

𝐹𝐹 (𝑒𝑒5 )  = {ℎ2 , ℎ3, ℎ5, ℎ6} comfortable shoes. 

Accordingly, the soft set (𝐹𝐹, 𝐴𝐴) is a parameterized {𝐹𝐹(𝑒𝑒i ), i = 1, 2, 3, 4, 5} family of subsets 

of the universal set 𝑋𝑋. 

Thus, the (𝐹𝐹, 𝐴𝐴) soft set becomes (𝐹𝐹, 𝐴𝐴) = {Summer shoes = {ℎ1}, winter shoes = { ℎ2 ,ℎ4 }, 

expensive shoes = {ℎ2 ,ℎ3 ,ℎ5}, beautiful shoes = {ℎ1 , ℎ2 , ℎ3, ℎ4, ℎ5}, comfortable shoes = 

{ℎ2 , ℎ3, ℎ5, ℎ6}}. 

Definition 2.2. For two soft sets (𝐹𝐹, 𝐴𝐴) and (𝐻𝐻, 𝐵𝐵) over a common universe 𝑋𝑋, we say that 

(𝐻𝐻, 𝐵𝐵) is a soft subset of (𝐹𝐹, 𝐴𝐴) if 

i. 𝐵𝐵 ⊂  𝐴𝐴 . 

ii. ∀ 𝜃𝜃 ∈ 𝐵𝐵,  𝐻𝐻(𝜃𝜃) and 𝐹𝐹(𝜃𝜃) are identical approximations. 

We write (𝐻𝐻, 𝐵𝐵)   ⊂̃  (𝐹𝐹, 𝐴𝐴) [2]. 

3. SOFT GROUPOIDS 

Definition 3.1. Let 𝐻𝐻 be a groupoid and 𝐴𝐴 the set of parameters, and let the family of all 

subgroupoids of this groupoid be denoted by 𝑃𝑃(𝐻𝐻). If the set F(𝜃𝜃) is a subgroupoid of 𝐻𝐻 with 

the 𝐹𝐹: 𝐴𝐴              𝑃𝑃(𝐻𝐻)  transformation for every  𝜃𝜃 ∈  𝐴𝐴 , the (𝐹𝐹, 𝐴𝐴)   pair is called a soft 

groupoid on 𝐻𝐻 [23]. 
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Definition 3.2. Let (𝐻𝐻, 𝐹𝐹, 𝐴𝐴)  and (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵)  be two soft groupoids, 𝑔𝑔: 𝐴𝐴              𝐵𝐵  is a 

surjective morphism and ℜ: 𝐻𝐻            𝐺𝐺  is a functor. If the following conditions exist, the 

(ℜ, 𝑔𝑔) pair is called a soft groupoid homomorphism:  

i.  ℜ functor is full,  

ii.  For every 𝜃𝜃 ∈  𝐴𝐴, ℜ (𝐹𝐹(𝜃𝜃)) = 𝐹𝐹′(𝑔𝑔(𝜃𝜃))[23]. 

Definition 3.3. Let (𝐻𝐻, 𝐹𝐹, 𝐴𝐴) and (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵)  be two soft groupoids. If for 𝐵𝐵 ⊆ 𝐴𝐴 and every 

𝜃𝜃 ∈  𝐵𝐵, the groupoid 𝐹𝐹′(𝜃𝜃) is a subgroupoid of 𝐹𝐹(𝜃𝜃), (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is called a soft subgroupoid 

of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴) [23]. 

Definition 3.4. Let (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) be a soft subgroupoid of the soft groupoid (𝐻𝐻, 𝐹𝐹, 𝐴𝐴). In this case, 

for each 𝜃𝜃 ∈  𝐵𝐵; 

i. If the groupoid 𝐹𝐹′(𝜃𝜃) is a full subgroupoid of 𝐹𝐹(𝜃𝜃), (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is called a full soft 

subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴). 

ii. If the groupoid 𝐹𝐹′(𝜃𝜃) is a wide subgroupoid of 𝐹𝐹(𝜃𝜃), (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is called a wide 

soft subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴). 

iii. If the groupoid 𝐹𝐹′(𝜃𝜃)  is a normal subgroupoid of 𝐹𝐹(𝜃𝜃) , (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵)  is called a 

normal soft subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴) [23]. 

Definition 3.5. Let (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) be a soft subgroupoid of the soft groupoid (𝐻𝐻, 𝐹𝐹, 𝐴𝐴), where 

(𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is totally disconnected. In this case, if the 𝐹𝐹(𝜃𝜃)/𝐹𝐹′(𝜃𝜃)   structure is a quotient 

groupoid for each 𝜃𝜃 ∈  𝐵𝐵, with the structure transformations reduced from the 𝐻𝐻/𝐺𝐺 quotient 

groupoid and the transformation defined as, 
𝐹𝐹′′ ∶ 𝐵𝐵           𝑃𝑃(𝐻𝐻/𝐺𝐺) 

                              𝜃𝜃  ↦   𝐹𝐹′′(𝜃𝜃) = 𝐹𝐹(𝜃𝜃)/𝐹𝐹′(𝜃𝜃)  

the (𝐻𝐻/𝐺𝐺, 𝐹𝐹′′, 𝐵𝐵) structure is called a soft quotient groupoid [23]. 

 

4. THE SOFT FIBRE OF GROUPOIDS 

In this section, the concept of fibre was first examined, then the concept of soft set and the 

concept of fibre that found a place in covering spaces were discussed together, and various 

concepts such as soft quotient map, soft fibre, and soft fibre groupoid, each of which are 

original concepts, were defined. 
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Definition 3.2. Let (𝐻𝐻, 𝐹𝐹, 𝐴𝐴)  and (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵)  be two soft groupoids, 𝑔𝑔: 𝐴𝐴              𝐵𝐵  is a 

surjective morphism and ℜ: 𝐻𝐻            𝐺𝐺  is a functor. If the following conditions exist, the 

(ℜ, 𝑔𝑔) pair is called a soft groupoid homomorphism:  

i.  ℜ functor is full,  

ii.  For every 𝜃𝜃 ∈  𝐴𝐴, ℜ (𝐹𝐹(𝜃𝜃)) = 𝐹𝐹′(𝑔𝑔(𝜃𝜃))[23]. 

Definition 3.3. Let (𝐻𝐻, 𝐹𝐹, 𝐴𝐴) and (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵)  be two soft groupoids. If for 𝐵𝐵 ⊆ 𝐴𝐴 and every 

𝜃𝜃 ∈  𝐵𝐵, the groupoid 𝐹𝐹′(𝜃𝜃) is a subgroupoid of 𝐹𝐹(𝜃𝜃), (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is called a soft subgroupoid 

of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴) [23]. 

Definition 3.4. Let (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) be a soft subgroupoid of the soft groupoid (𝐻𝐻, 𝐹𝐹, 𝐴𝐴). In this case, 

for each 𝜃𝜃 ∈  𝐵𝐵; 

i. If the groupoid 𝐹𝐹′(𝜃𝜃) is a full subgroupoid of 𝐹𝐹(𝜃𝜃), (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is called a full soft 

subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴). 

ii. If the groupoid 𝐹𝐹′(𝜃𝜃) is a wide subgroupoid of 𝐹𝐹(𝜃𝜃), (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is called a wide 

soft subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴). 

iii. If the groupoid 𝐹𝐹′(𝜃𝜃)  is a normal subgroupoid of 𝐹𝐹(𝜃𝜃) , (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵)  is called a 

normal soft subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝐴𝐴) [23]. 

Definition 3.5. Let (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) be a soft subgroupoid of the soft groupoid (𝐻𝐻, 𝐹𝐹, 𝐴𝐴), where 

(𝐺𝐺, 𝐹𝐹′, 𝐵𝐵) is totally disconnected. In this case, if the 𝐹𝐹(𝜃𝜃)/𝐹𝐹′(𝜃𝜃)   structure is a quotient 

groupoid for each 𝜃𝜃 ∈  𝐵𝐵, with the structure transformations reduced from the 𝐻𝐻/𝐺𝐺 quotient 

groupoid and the transformation defined as, 
𝐹𝐹′′ ∶ 𝐵𝐵           𝑃𝑃(𝐻𝐻/𝐺𝐺) 

                              𝜃𝜃  ↦   𝐹𝐹′′(𝜃𝜃) = 𝐹𝐹(𝜃𝜃)/𝐹𝐹′(𝜃𝜃)  

the (𝐻𝐻/𝐺𝐺, 𝐹𝐹′′, 𝐵𝐵) structure is called a soft quotient groupoid [23]. 

 

4. THE SOFT FIBRE OF GROUPOIDS 

In this section, the concept of fibre was first examined, then the concept of soft set and the 

concept of fibre that found a place in covering spaces were discussed together, and various 

concepts such as soft quotient map, soft fibre, and soft fibre groupoid, each of which are 

original concepts, were defined. 

Definition 4.1. Let 𝜑𝜑: 𝐻𝐻            𝐺𝐺 be a morphism of groupoids. A morphism 𝜑𝜑: 𝐻𝐻            𝐺𝐺 is 

faithfull (resp full) if the restrictions of 𝜑𝜑 mapping 𝐻𝐻(𝑥𝑥, 𝑦𝑦)            𝐺𝐺(𝜑𝜑(𝑥𝑥), 𝜑𝜑(𝑦𝑦)) are injective 

(resp surjective) for all objects 𝑥𝑥, 𝑦𝑦 of 𝐻𝐻 [24]. 

Definition 4.2. Let 𝜑𝜑: 𝐻𝐻            𝐺𝐺  be a morphism of groupoids. The fibre of 𝜑𝜑 at an object 𝑦𝑦 of 

𝐺𝐺 is the suhgroupoid of 𝐻𝐻 whose elements are mapped by 𝜑𝜑 to the identity at 𝑦𝑦; this fibre is 

written 𝜑𝜑−1(𝑦𝑦). Clearly the kernel of 𝜑𝜑, ker 𝜑𝜑, is the sum (or disjoint union, as it is also 

called) of the fibres 𝜑𝜑−1(𝑦𝑦) for all objects 𝑦𝑦 of 𝐺𝐺 [24]. 

Definition 4.3. Let 𝜑𝜑 ∶ 𝐻𝐻            𝐺𝐺  be a soft groupoid homomorphism. Im 𝜑𝜑  is the set of 

elements 𝜑𝜑(𝑎𝑎) for 𝑎𝑎 ∈ 𝐻𝐻. Let the structure (𝐻𝐻/𝐺𝐺, 𝐹𝐹′′, 𝐵𝐵) be a soft quotient groupoid as given 

in Definition 3.5. The 𝑝𝑝: 𝐻𝐻          𝐻𝐻/𝐺𝐺 projection is the soft homomorphism of soft groupoids 

that is universal for homomorphisms from 𝐻𝐻 to 𝜑𝜑 such that Im 𝜑𝜑 is disjoint. 

Any such universal soft homomorphism of the form 𝑝𝑝, which must be followed by a soft 

isomorphism, is called a soft quotient map. 

Definition 4.4. Let 𝜑𝜑 ∶ 𝐻𝐻            𝐺𝐺 be a soft groupoid homomorphism. The soft fibre of 𝜑𝜑 at 

an object 𝑦𝑦 of 𝐺𝐺 is the subgroupoid of 𝐻𝐻 whose elements are mapped by 𝜑𝜑 to the identity at 𝑦𝑦; 

this soft fibre is written 𝑆𝑆𝑆𝑆−1(𝑦𝑦). 
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𝐻𝐻                                                                                𝐺𝐺 

                                                                      

 

   

 𝜑𝜑 

 

                           𝜑𝜑−1(𝑦𝑦) 

      𝑎𝑎 • 

  𝑏𝑏 • 

                  𝑐𝑐 • 

… 

 

                             𝑦𝑦 
                                •  

1𝑦𝑦 

… 
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ℱ ∶ 𝑂𝑂𝑂𝑂(𝐺𝐺)            𝑃𝑃(𝐻𝐻) 

                        𝑦𝑦  ↦   ℱ(𝑦𝑦) = 𝜑𝜑−1(𝑦𝑦) ≤ 𝐻𝐻   

is a soft groupoid.  

This soft groupoid is called soft fibre groupoid and is denoted by (𝐻𝐻, ℱ, 𝑂𝑂𝑂𝑂(𝐺𝐺)). 

 

𝐻𝐻                                                                                𝐺𝐺 

                                                                         𝜑𝜑 

 

   

ℱ   
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                                𝑦𝑦  ↦   ℱ(𝑦𝑦) = 𝜑𝜑−1(𝑦𝑦) ≤ 𝐻𝐻 

 

Explanation 4.1. Let 𝜑𝜑 ∶ 𝐻𝐻            𝐺𝐺 be a soft groupoid homomorphism as given above. 

Let us show that 𝜑𝜑−1(𝑦𝑦) ≤ 𝐻𝐻 for ∀ 𝑦𝑦 ∈ 𝑂𝑂𝑂𝑂(𝐺𝐺): 
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      𝑎𝑎 • 

  𝑏𝑏 • 

                   𝑐𝑐 • 

… 
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1𝑦𝑦 

… 
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… 

 

 

Proposition 4.1. Let 𝜑𝜑: 𝐻𝐻           𝐺𝐺 be a soft groupoid homomorphism, where (𝐺𝐺, 𝐹𝐹′, 𝑂𝑂𝑂𝑂(𝐺𝐺)) is 

a wide soft subgroupoid of the soft groupoid (𝐻𝐻, 𝐹𝐹, 𝑂𝑂𝑂𝑂(𝐻𝐻)). In this case, (𝐻𝐻, ℱ, 𝑂𝑂𝑂𝑂(𝐺𝐺)) soft 

fibre groupoid is a normal soft subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝑂𝑂𝑂𝑂(𝐻𝐻)). 

Proof. First, let's show that (𝐻𝐻, ℱ, 𝑂𝑂𝑂𝑂(𝐺𝐺))  ≤ (𝐻𝐻, 𝐹𝐹, 𝑂𝑂𝑂𝑂(𝐻𝐻)): 

i. Since 𝐺𝐺 is a wide soft subgroupoid of 𝐻𝐻, 𝑂𝑂𝑂𝑂(𝐺𝐺)  ⊆  𝑂𝑂𝑂𝑂(𝐻𝐻). 

ii. For the soft groupoid (𝐻𝐻, 𝐹𝐹, 𝑂𝑂𝑂𝑂(𝐻𝐻)), let the 𝐹𝐹 transformation be defined as 

follows: 

𝐹𝐹 ∶ 𝑂𝑂𝑂𝑂(𝐻𝐻)           𝑃𝑃(𝐻𝐻) 
                                                              𝑦𝑦  ↦   𝐹𝐹(𝑦𝑦) = 𝑘𝑘𝑘𝑘𝑘𝑘𝜑𝜑 ≤ 𝐻𝐻 

In this case, ℱ(𝑦𝑦) = 𝜑𝜑−1(𝑦𝑦) = {𝑎𝑎 ∈ 𝐻𝐻 ∶  𝜑𝜑(𝑎𝑎) = 1𝑦𝑦} ≤ 𝑘𝑘𝑘𝑘𝑘𝑘𝜑𝜑 = 𝐹𝐹(𝑦𝑦), for every 𝑦𝑦 ∈
𝑂𝑂𝑂𝑂(𝐺𝐺). We showed that the groupoid ℱ(𝑦𝑦) is an wide subgroupoid of 𝐹𝐹(𝑦𝑦). 

Moreover, since there will be 𝑓𝑓−1 ∗ 𝜑𝜑−1(𝑦𝑦){𝑏𝑏} ∗ 𝑓𝑓 = 𝜑𝜑−1(𝑦𝑦){𝑎𝑎}, for every 𝑎𝑎, 𝑏𝑏 ∈ 𝐹𝐹(𝑦𝑦) =
𝑘𝑘𝑘𝑘𝑘𝑘𝜑𝜑 and 𝑓𝑓 ∈ mor(𝑎𝑎, 𝑏𝑏), the groupoid ℱ(𝑦𝑦) is a normal subgroupoid of 𝐹𝐹(𝑦𝑦). 

Then (𝐻𝐻, ℱ, 𝑂𝑂𝑂𝑂(𝐺𝐺)) soft fibre groupoid is a normal soft subgroupoid of (𝐻𝐻, 𝐹𝐹, 𝑂𝑂𝑂𝑂(𝐻𝐻)). 

                             □ 

We showed above that ker𝜑𝜑 is a normal soft subgroupoid of 𝐻𝐻. Accordingly, we can write the 

following diagram:  

𝐻𝐻          𝜑𝜑          𝐺𝐺 

 

            𝑘𝑘(𝜑𝜑)              𝑞𝑞(𝜑𝜑) 
               

                             𝐻𝐻/𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

For a general 𝜑𝜑 soft homomorphism, the kernel of 𝑞𝑞(𝜑𝜑) consists of only identities. In this 

case, 𝑞𝑞(𝜑𝜑) is said to have a soft discrete kernel. 

Definition 4.6. Let (𝐻𝐻, 𝐹𝐹, 𝐴𝐴)and (𝐺𝐺, 𝐹𝐹′, 𝐵𝐵)  be soft groupoids and 𝜑𝜑 ∶ 𝐻𝐻            𝐺𝐺  be a soft 

groupoid homomorphism. 
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1) If the constraints on the mapping 𝐻𝐻(𝑥𝑥, 𝑦𝑦)       𝐺𝐺(𝜑𝜑(𝑥𝑥), 𝜑𝜑(𝑦𝑦)) for ∀ 𝑥𝑥, 𝑦𝑦 ∈ 𝐻𝐻  are 

surjective, 𝜑𝜑 is said to be soft full. Here, since the 𝜑𝜑 transformation is surjective by 

definition, it is soft full without any other conditions. 

2) If the constraints on the mapping 𝐻𝐻(𝑥𝑥, 𝑦𝑦)       𝐺𝐺(𝜑𝜑(𝑥𝑥), 𝜑𝜑(𝑦𝑦))  for ∀  𝑥𝑥, 𝑦𝑦 ∈ 𝐻𝐻  are 

injective, 𝜑𝜑 is said to be soft faithfull. 

5.CONCLUSIONS 

In this study, the concept of soft set and the concept of fibre, which finds a place in covering 

spaces, are discussed together and various concepts such as soft quotient map, soft fibre, and 

soft fibre groupoid, each of which are original concepts, are introduced. In addition, these 

concepts have been made more understandable with proposition, explanation and figures. 
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