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The Nineth International Conference on Computational Mathematics and Engineering
Sciences (CMES-2025) will be held in Dicle University from 17- to 19 May 2025 in Dicle,
Tiirkiye. It provides an ideal academic platform for researchers and professionals to discuss recent
developments in both theoretical, applied mathematics and engineering sciences. This event also aims
to initiate interactions among researchers in the field of computational mathematics and their
applications in science and engineering, to present recent developments in these areas, and to share

the computational experiences of our invited speakers and participants.

The Organizing Committee

©AIl Rights Reserved. This conference is organized by a cooperation of several international
organizations including Firat University, Final International University, Moulay Ismail University,
Private University of Fes, Dicle University, Harran University, Van Yiiziincii Yil University, Manas
University, Ordu University Erzurum Technic University and Inonu University. No part of this book
can be reproduced or utilized in any forms or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval systems, without permission
from the authors.

© The informations provided in the papers published in this book are under the responsibility of
their author(s).

Committee Chairs

Hasan Bulut, Firat University, Tiirkiye
Zakia Hammouch, Ecole Normale Superierue de Meknes, Moulay Ismail University, Morocco
Ercan Celik, Kyrgyz-Turkish Manas University, Kyrgyzstan
Haci Mehmet Baskonus, Harran University, Tiirkiye
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MESSAGE FROM THE GENERAL CHAIRS

Dear Conference Attendees,

We are honored to welcome you to the Nineth International Conference on Computational
Mathematics and Engineering Sciences (CMES-2025) at Dicle University from 17 to 19 May 2025
in Diyarbakir City, Tiirkiye.

CMES, founded in 2016 at Faculty of Science and Techniques Errachidia Moulay Ismail

University Morocco is an annual intarnational conference, which was very successful in the past years
by providing opportunities to the participants in sharing their knowledge and informations and
promoting excellent networking among different international universities. This year, the conference
includes 200 extended abstracts, several submissions were received in response to the call for papers,
selected by the Program Committee. The program features keynote talks by distinguished speakers
such as:
Dumitru Baleanu from Lebanese American University, Beirut, Lebanon; Baver Okutmustur from
Middle East Technical University, Tiirkiye; Mehrdad Lakestani from Tabriz University, Iran,
Ekrem Savas from Usak University, Tiirkiye; Ozlem Defterli from Cankaya University, Tiirkiye;
Sedaghat Shahmorad from Tabriz University, Iran. The conference also comprises contributed
sessions, posters sessions and various research highlights.

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review and discuss submitted abstracts. We would like to extend special
thanks to the Honorary, Scientific and Organizing Committees for their efforts in making CMES-
2025 a successful event. We would like to thank all the authors for presenting their research studies
during our conference. We are grateful to DUBAP(ZGEF.25.003) for research funds. We hope that
you will find CMES-2025 interesting and intellectually stimulating, and that you will enjoy meeting
and interacting with researchers around the world.

Hasan Bulut,

Firat University, Elazig, Tirkiye.

Zakia Hammouch,

ENS Meknes, Moulay Ismail University Morocco

Thu Dau Mot University, Binh Duong Province, Vietnam

China Medical University Hospital Taichung 40402, Taiwan.
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Control Theory,

Game Theory,

Applied Mathematics,
Financial Mathematics,
Artificial Intelligence,
Education Sciences,
Engineering Sciences,
Computer Science,
Information Technology,
Geometry and Its Applications,
Analysis and Its Applications,
Statistics and Its Applications,
Algebra and Its Applications,
Topology and Its Application,

Chaos and Dynamical Systems,

TOPICS

Electrical and Electronic Engineering,
Defense industry and applications,
Mathematical Biology,

Computational Epidemiology,
Mathematical Chemistry,

Mathematics Education and Its Applications,
Numerical Methods and Scientific
Programming,

Linearand Nonlinear programming and
Dynamics,

Modeling of Bio-systems for Optimization
and Control,

Ordinary, Partial, Stochastic and Delay
Differential Equations,

Computational Fluids mechanics. Heat and

Cryptography and its Applications, Mass Transfers,
Fractional Calculus and Applications, Earth Sciences,
Economics and Econometric Studies, Applied Sciences

COMMITTEE CHAIRS

Prof.Dr.Hasan Bulut, Firat University, Elaz1g, Tiirkiye
Prof.Dr.Zakia Hammouch, ENS Meknes, Moulay Ismail University, Morocco
Prof. Dr. Ercan Celik, Kyrgyz-Turkish Manas University, Kyrgyzstan

Prof.Dr.Haci Mehmet Baskonus, Harran University, Tiirkiye

COMMITTEE CO-CHAIRS

Prof.Dr. Carlo Cattani, Tuscia University, Viterbo, Italy
Prof.Dr. Mohammed Ouazzani Jamil, University Privee of Fez, Morocco

Prof. Dr. Hassan Qjidaa, Sidi Mohammed Ben Abdellah University, Fes Morocco
Prof. Dr. El Mehdi El Khattabi, Moulay Ismail University Morocco
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Assoc. Prof. Dr. Tolga Aktiirk, Ordu University, Tiirkiye

HONORARY COMMITTEE

Prof. Dr. Alpaslan Ceylan, Rector of Kyrgyz-Turkish Manas University, Kyrgyzstan
Prof. Dr. Aytag Coskun, Vice Rector of Dicle University, Turkiye
Prof. Dr. Ahmed Mouchtachi, Rector of Moulay Ismail University, Meknes, Morocco
Prof. Dr. Abdelmjid Abourriche, Vice Rector of Moulay Ismail University, Meknes, Morocco
Prof. Dr. Bilent Cakmak, Rector of Erzurum Technical University, Erzurum, Turkiye
Prof. Dr. Ekrem Savas, Rector of Usak University, Turkiye
Prof. Dr. Etibar Penahh, Baku State University, Baku, Azerbaijan
Prof. Dr. Fahrettin Goktas, Rector of Firat University, Elazig, Turkiye
Prof. Dr Haddad Abderrahman, Vice Rector of Moulay Ismail University Morocco
Prof. Dr. Hamdullah Sevli, Rector of Van Yuzinci Yil University, Turkiye
ibrahim Tasel, Final International University, Gime, Cyprus
izzettin Toraman, Chairman of the Board of Toraman Tekstil
Prof. Dr. Kamuran Eronat, Rector of Dicle University, Diyarbakir, Turkiye
Prof. Dr. Mahmut Ergiit, Namik Kemal University, Tekirdag, Tlrkiye
Prof. Dr. Mehmet Sirag Ozerdem, Vice Rector of Dicle University, Diyarbakir, Tiirkiye
Prof. Dr. Mehmet Tahir Gullioglu, Rector of Harran University, Sanliurfa, Turkiye
Prof. Dr. Mohammed Aziz Lahlou, President of Universite Privee of Fes, Morocco
Prof. Dr. Necdet Bildik, Retired Faculty Member, Celal Bayar University, Turkiye
Prof. Dr. Orhan Bas, Rector of Ordu University, Ordu, Turkey
Prof. Dr. Orhan Gemikonakl, Rector of International Final University, Gime, Cyprus
Prof. Dr. Ouazzani Jamil Mohamed, Vice President of Universite Privee of Fez, Morocco
Prof. Dr. Rengin Ak, Rector of Kirklareli University, Kirklareli, Turkiye
Prof. Dr. Rifat Colak, Retired Faculty Member, Firat University, Turkiye
Sahin Otu, Chairman of Final Schools Diyarbakir
Prof. Dr. Senglil Kocaman, Dean of Education Faculty, Diyarbakir, Tirkiye
Sevket Ertem, Final International University, Gime, Cyprus
Prof. Dr. Sezai Asubay, Dean of Science Faculty, Diyarbakir, Tlrkiye
Prof. Dr. Subhan N. Namazov, Vice Rector, Azerbaijan Technical University, Baku, Azerbaijan
Prof. Dr. Velat Sen, Vice Rector of Dicle University, Tlrkiye
Prof. Dr. Vilayet M. Veliyev, Rector of Azerbaijan Technical University, Baku, Azerbaijan
Prof. Dr. Volkan Ongel, Rector of istanbul Beykent University, istanbul, Tiirkiye
Prof. Dr. Yusif Gasimov, Azerbaijan University, Baku, Azerbaijan

SCIENTIFIC COMMITTEE

Abdellah Rababah (University of Science and Technology Irbid, Jordan)
Abdellah Rezzouk (Sidi Mohamed Ben Abdellah University, Morocco)
Abdelmjid Bouazizi (ENS Moulay Ismail University Morocco)
Abdelaziz Sbai (EST Moulay Ismail University, Morocco)
Abdelouahed Alla Hamou (FS, Mohamed V University Rabat, Morocco)
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Abdulhamit Subasi (University of Turku, Finland)
Abdulkadir Karakas (Siirt University, Turkiye)

Abdullah Cagman (Agri ibrahim Cecen University, Tiirkiye)
Abdullah Kopuzlu (Ataturk University, Tirkiye)
Abdullahi Yusuf (Biruni University, Istanbul, Tirkiye)
Adnéne Arbi (University of Carthage, Tunisia)
Agamirza Bashirov (Eastern Mediterranean University, Cyprus)
Ahmed Elngar (Beni Suef University, Egypt)

Ahmet Bedri Ozer (Firat University, Elazig, Turkiye)
Ahmet Dumlu (Erzurum Technical University, Turkiye)
Ahmet Ocak Akdemir (Agri ibrahim Cecen University, Tirkiye)
Ahmet Yildiz (inénii University, Malatya, Tiirkiye)

Akbar Barati Chiyaneh (YUzinclyil University, Bitlis, Van)

Ali Akgul (Siirt University, Tirkiye)

Ali Cakmak (Bitlis Eren University, Bitlis, Turkiye)

Ali ihsan Mut (Dicle University, Tirkiye)

Ali Karci (inénii University, Malatya)

Ali Rostami (University of Tabriz, Tabriz, Iran)

Ali Yousef (Kuwait College Of Science And Technology, Kuwait)
Alireza Khalili Golmankhaneh (IAU Urmia Branch, Iran)

Alla Belousova (Don State Technical University, Russian Federation)
Alev Dulger (Dicle University, Turkiye)

Alper Ekinci (Bandirma 17 Eylul University, Tirkiye)

Alper Osman Ogrenmis (Firat University, Elazig, Tirkiye)
Alper Polat (Munzur University, Tirkiye)

Aly Ramadan Seadawy (Taibah University, Saudi Arabia)
Anargul Urdaletova (Kyrgyz-Turkish Manas University, Kyrgyzstan)
Aneta Barakoska (Faculty of Philosophy, University St. Cyril, Macedonia)
Anna Sandulyak (Université de Moscow, Russia)

Arife Atay (Dicle University, Turkiye)

Armando Ciancio (University of Messina, Italy)

Arzu Akbulut (Eskisehir Osmangazi University, Turkiye)
Arzu Denk Oguz (Atihm University, Turkiye)

Asan Omraliyev (Kyrgyz-Turkish Manas University, Kyrgyzstan)
Atif A. Namazov (Azerbaijan Technical University, Baku, Azerbaijan)
Avit Asanov (Kyrgyz-Turkish Manas University, Kyrgyzstan)
Ayhan Serbetgi (Ankara University, Ankara)

Aynur Keskin Kaymakgi (Selcuk University, Konya)

Ayse Dilek Maden (Selguk University, Konya)

Ayse Metin Karakas (Bitlis Eren University, Bitlis, Turkiye)
Aysegul Cetinkaya (Ahi Evran University, Turkiye)

Badr Abou E Majd (Mohammed V University in Rabat, Morocco)
Bashar A. Al-Talip (University of Mosul, Iraq)

Bayram Cekim (Gazi University, Turkiye)

Bayram Sahin (Ege University, izmir, Tiirkiye)
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Behget Oznacar (Near East University, Cyprus)
Berivan Polat (Munzur University, Turkiye)
Beytullah Yagiz (Yizunci Yil University, Tirkiye)
Bilal Alatas (Firat University, Turkiye)
Bilal Senol (inénii University, Malatya)
Bilgehan Polatoglu (Atatiirk University, Turkiye)

Burcu Gurbiiz (Johannes Gutenberg-University Mainz, Germany)
Burcin Dogan (Malatya Turgut Ozal University, Tiirkiye)
Burhan Tiryakioglu (Marmara University, Turkiye)
Bilent Tavh (Tobb Economics And Technology University, Turkiye)
Cameron Browne (University of Louisiana at Lafayette, USA)
Carla M.A. Pinto (ISEP, Porto, Portugal)

Carlo Cattani (Tuscia University, Viterbo, Italy)
Cemil inan (Mardin Artuklu University, Tiirkiye)
Ceren Kina (Malatya Turgut Ozal University, Tiirkiye)
Cesim Temel (YUzincuyil University, Tirkiye)
Chérif Ziti (Moulay Ismail University, Morocco)
Christos Volos (Aristotle University, Greece)
Cagri Karaman (Atatlrk University, Erzurum, Tlrkiye)
Cigdem Inan (Mersin University, Tiirkiye)
Damla Yilmaz (Erzurum Technical University, Turkiye)
Danyal Soybas (Erciyes University, Tirkiye)
Davut Hanbay (inénii University, Malatya)
Derya Arslan (Bitlis Eren University, Tirkiye)
Derya Avci (Balikesir University, Turkiye)

Dilek Okuyucu (Erzurum Technical University, Turkiye)
Dumitru Baleanu (Cankaya University, Tirkiye)
Dursun Irk (Eskisehir Osmangazi University, Eskisehir)
Dyyak Ivan (Ilvan Franko National University, Lviv, Ukraine)
Ebru Bozkurt (Ataturk University, Tlrkiye)

Ecem Acar (Harran University, Sanhurfa, Tirkiye)
El Abbassi Ahmed (FSTE, Moulay Ismail University, Morocco)

El Ayyadi Rachid (FST, Sidi Mohammed Benabdellah University, Morocco)
El Hassan Ben Ahmed (Ens Meknes, Moulay Ismail University, Morocco)
El Houcine Lafhim (Sidi Mohamed Ben Abdellah University, Morocco)
El Khomssi Mohamed (Sidi Mohamed Ben Abdellah University, Morocco)
El Mehdi El Khattabi (Ens Meknes, Moulay Ismail University, Morocco)
Ella Abilayeva (Kyrgyz-Turkish Manas University, Kyrgyzstan)
Elman Hazar (Igdir University, Turkiye)

Emel Biger (Bingdl University, Turkiye)

Emrah Yilmaz (Firat University, Elazig)

Engin Ozkan (Erzincan Binali Yildinm University, Erzincan)
Ennahnahi Noureddine (Sidi Mohamed Ben Abdellah University, Morocco)
Erdal Bas (Firat University, Elazig, Turkiye)

Erdal Ekici (Canakkale Onsekiz Mart University, Canakkale)
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Erdal Ulualan (Kutahya University, Turkiye)
Erdal Unliiyol (Ordu University, Tirkiye)
Erhan Deniz (Kafkas University, Turkiye)
Erhan Guler (Bartin University, Turkiye)

Erhan Pigkin (Dicle University, Diyarbakir, Turkiye)

Erhan Set (Ordu University, Tirkiye)
Erol Yasar (Mersin University, Turkiye)

Esin llhan (Kirsehir Ahi Evran University, Turkiye)
Esra Karatas Akgul (Siirt University, Tlrkiye)
Eva Kaslik (University of Timisoara, Romania)

Evrim Toklu (Agri ibrahim Cecen University, Tiirkiye)
Ezgi Kaya (13dir University, Turkiye)

Fahd Jarad (Cankaya University, Tirkiye)
Fahrettin Muhtarov (Baku State University, Azerbaijan)
Fatma Ayaz (Gazi University, Turkiye)

Fatma Berna Benli (Erciyes University, Tirkiye)
Fatma Bulut (Bitlis University, Turkiye)

Fatma Erdogan (Firat University, Turkiye)

Fatma Sagds6z (Atatlirk University, Turkiye)

Fatma Tasdelen Yesildal (Ankara University, Turkiye)
Fethi Bin Muhammad Belgacem (Paaet, Shaamyia, Kuwait)
Fethiye Miige Sakar (Dicle University, Turkiye)

Feyza Esra Erdogan (Ege University, izmir, Tiirkiye)
Fikret Aliyev (Bakl State University, Azerbaijan)

Filiz Tascan (Eskisehir Osmangazi University, Eskisehir)
Firat Evirgen (Balikesir University, Turkiye)
Francesco Villecco (University Salerno, Italy)

Fulya Sahin (Ege University, Izmir, Tirkiye)

Gonca Onargan (Final International University, Girne, Cyprus)
Gokhan Gokdere (Firat University, Elazig)

Gllsat Muhametjanov (Kyrgyz-Turkish Manas University, Kyrgyzstan)
Giirhan igdz (Gazi University, Tirkiye)

Glven Kaya (Bingdl University, Turkiye)

Hacer Sengul (Harran University, Sanh urfa, Turkiye)
Haldun Kucuk (Tarsus University, Mersin, Turkiye)
Hamit Akyiz (Gazi University, Ankara, TUrkiye)
Hasan Can Kisakiirek (istanbul University, istanbul, Tiirkiye)
Hasan Dogan (Karamanoglu Mehmetbey University, Karaman)
Hasan Tas (Firat University, Elazig, Tlrkiye)

Hasan Yusuf (The University of Nigeria, Nsukka)
Hatice Tas (Bitlis Eren University, Bitlis, Turkiye)
Hazim Sirer (Ataturk University, Erzurum, Tirkiye)
Hidayet Eski (Mersin University, Turkiye)

Hussain Benazza (ENSAM, Moulay Ismail University Morocco)

Hiseyin Kalayci (Mersin University, Turkiye)
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Hiiseyin Kaya (indnii University, Malatya, Tiirkiye)
Hiseyin Yiimaz (Ankara University, Ankara)

llyas Oztiirk (Dicle University, Diyarbakir, Tiirkiye)

ibrahim Arslan (Firat University, Tiirkiye)
ibrahim Korkmaz (Kirikkale University, Tiirkiye)
ibrahim Okan Oztiirk (Dicle University, Diyarbakir)
ismail Yilmaz (Canakkale Onsekiz Mart University, Tiirkiye)

ismail Hakki Keskin (Firat University, Elazig)

Ismail Kiguk (Eskisehir Osmangazi University, Eskisehir)
Ivan Reyes (Universidad Auténoma de Querétaro, México)
Jakub Tichy (Czech University of Life Sciences, Czech Republic)
Jean-Come Toutain (University of Poitiers, France)
Jodo Barbosa (University of Lisbon, Portugal)

Joao Luis (IST, University of Lisbon, Portugal)

John K. B. (University of York, UK)

Josep A. R. (University of Barcelona, Spain)
Joseph Asongu (University of Juba, Sudan)

Juan E. Lépez (University of Chile, Chile)

Jurgen Noack (Brandenburg University of Technology, Germany)
Julia Kovacs (Technical University of Budapest, Hungary)
Kadir S. (University of Uludag, Turkiye)

Kamran E. (University of Tehran, Iran)

Kamran Yavuz (Ankara University, Ankara, Tirkiye)
Kamil Kose (Gazi University, Tirkiye)

Karim Jebli (University of Monastir, Tunisia)

Keith A. (University of Oxford, UK)

Kenan Kavasoglu (Cankiri Karatekin University, Tlrkiye)
Khaled M. (King Fahd University of Petroleum and Minerals, Saudi Arabia)
Khoa T. (Vietnam National University)

Kohei T. (Kyoto University, Japan)

Kostas G. (University of Thessaloniki, Greece)
Krzysztof K. (Silesian University, Poland)

Laszl6 Sz. (University of Szeged, Hungary)

Louay Al-Kharouf (University of Bahrain, Bahrain)
Maher Shoukry (Cairo University, Egypt)
Mohamed S. S. (Al-Mansoura University, Egypt)
Mohamed Tarek Hamza (Mansoura University, Egypt)
Mubariz Alvi (University of Sindh, Pakistan)

Murat Karakas (Bitlis University, Turkiye)

Mustafa Arslan (Gazi University, Turkiye)

Mustafa Tunc (Erzurum Technical University, Tlrkiye)
Nezih Gilkir (Akdeniz University, Turkiye)

Nima Mostafavi (Isfahan University of Technology, Iran)
Nural Ozkaya (Dicle University, Diyarbakir, Tirkiye)

Ouberka Hanane (ENS, Moulay Ismail University Morocco)
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Oguz Karabacak (istanbul University, istanbul, Tirkiye)
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Omer Yilmaz (inénii University, Malatya, Tiirkiye)
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Sipahi, D (Bilkent University, Turkiye)
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Srikant Mishra (Biju Patnaik University of Technology, India)
Stephen T. (University of Maryland, USA)
Sulaiman Al-Harbi (King Saud University, Saudi Arabia)
Sakir Isleyen (Yiiziinci Yil University, Tiirkiye)

Sule Kocabas (Istanbul University, Istanbul, Tirkiye)
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Tomasz Z. (Warsaw University, Poland)

Valter S. (University of Porto, Portugal)
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9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



Assoc. Prof. Dr. Tolga Aktlrk, (Co-Chair), Ordu University, Tirkiye
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MODIFIED FRACTIONAL OPERATORS:
THEORY AND APPLICATIONS

Dumitru Baleanu'

'Department of Computer Science and Mathematics,Lebanese American University, Beirut,
Lebanon and Institute of Space Sciences-Subsidiary of INFLPR,

Magurele-Bucharest, Romania
dumitru.baleanu@lau.edu.lb,

Abstract

Fractional Calculus deals with the study of so-called fractional order integral and
derivative operators over real or complex domains, and their applications. In this talk I will
discuss the modified ABC operator and I will explain the related properties and its real world

applications.

Keywords: Fractional calculus;General kernel; Modified ABC operator.

REFERENCES

1. Mohammed Al-Refai, Dumitru Baleanu,On an extension of the operator with Mittag-Leftler

kernel, Fractals, 30(51), 2022, Article number 2240129.

16 9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye




A COMPARATIVE STUDY OF ADAPTIVE GRID
METHODS FOR BURGERS MODELS

Baver Okutmustur'

'Department of Mathematics, Middle East Technical University (METU), Ankara, Turkey

baver@metu.edu.tr

Abstract

This work presents comparative numerical study of shock solutions in classical and relativistic a
Burgers models using two finite volume-based adaptive mesh refinement (AMR) strategies: 2-adaptivity
(local grid refinement) and r-adaptivity (mesh redistribution). The A-method dynamically adjusts
resolution by adding/removing cells in shock regions, while the r-method maintains a fixed cell count
but optimally redistributes points to sharpen shock resolution. We compare both approaches in terms of
accuracy and efficiency, demonstrating their effectiveness for handling shocks and nonlinear waves in
both classical and relativistic cases. This work is based on the joint work [4].

Keywords: Adaptive grid; h-refinement; r-refinement; Monitor function; Finite volume
method; Relativistic Burgers equation

REFERENCES

1. J.M. Stockie, J.A. Mackenzie, R.D. Russell, A moving mesh method for one-dimensional

hyperbolic conservation laws, SIAM J. Sci. Comput. 22 (2001) 1791-1813.

2. HZ. Tang, T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic
conservation laws, SIAM J. Numer. Anal. 41 (2003) 487-515.

3. A. van Dam, P.A. Zegeling, A robust moving mesh finite volume method applied to 1D
hyperbolic conservation laws from magnetohydrodynamics, Journal of Computational Physics,

Volume 216, Issue 2, 2006, 526-546.

4. B. Okutmustur, K. Vuik, K. Yigit, Adaptive Mesh Refinement Methods for Relativistic

Burgers-Schwarzshild Model, in preparation.
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The development adventure of mathematics

Ekrem SAVAS
Usak University, Usak-Turkey

Email: ekremsavas@yahoo.com

Abstract:

Mathematics has always existed since the first steps of culturel history of
the living creatures called human beings. It has always been a part of culture with
numbers, figures, characteristics and with their applications according to the
technical levels of the day. In this study, a general knowledge will be given
concerning how math began and what phases it went through up to now. In
getting the data, books and articles dealing with the issue have been studied. The
findings we have show that it is not possible to say exactly where and when
mathematics began. However, we can say, on the basis of findings, that math
began in Epypt and Mesopotamia between 3000-2000 B.C. and then spread to
other countries.
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ADVANCED MATHEMATICAL MODELLING AND
INFERENCE OF GENE REGULATORY NETWORKS
WITH REAL DATA

Ozlem Defterli'
' Department of Mathematics, Faculty of Arts and Sciences,
Cankaya University, Ankara, Turkey

defterli@cankaya.edu.tr

Abstract

Systems biology addresses the challenge of understanding living systems in their entirety,
as opposed to concentrating on individual biological elements.One approach to describing
biological systems is through networks which are the graphical representations in which nodes
denote entities of the system and edges signify the relationships between them.Given that the
underlying structure of many networks remains partially or entirely unknown, a key objective
of systems biology is to predict the complex and dynamic interactions among genes.This is
called network inference (NI) that focuses on deducing network structures by leveraging high-
throughput data in combination with reverse engineering methods. A fundamental challenge in
network inference is the high dimensionality—often involving thousands of genes—contrasted
with the relatively small number of available samples. Consequently, gene regulatory network
(GRN) inference is inherently under-determined [1,2]. In this study, a time-series gene
expression data-set derived from a micro-array chip experiment involving a model eukaryotic
organism is used for illustrative purposes. The dataset’s key characteristics are analyzed to gain
insights into the structure and behavior of the underlying biological process. Subsequently, the
temporal dynamics of the system are modeled in a discrete-time framework, employing
advanced mathematical modeling techniques to capture the complexity and regulatory
mechanisms of gene interactions [3,4].

Keywords: Network inference, Mathematical modelling, Data processing.

REFERENCES

1. Slonim K. Donna, From patterns to pathways: gene expression data analysis comes of age
(Review), Nature Genetics, Vol:32(Suppl.), 502-508, 2002.
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W N & 1 Jli
SOME EFFECTIVE NUMERICAL METHODS FOR
FRACTIONAL DIFFERENTIAL EQUATIONS

S. Shahmorad!

shahmorad@tabrizu.ac.ir
IDepartment of Applied Mathematics, University of Tabriz, Tabriz,

East Azarbaijan, Iran

Abstract

Some efficient numerical methods such as block-by-block, fuzzy transform and interpolation based
methods are studied for solving linear and nonlinear single term and multi-term frac- tional
differential equations (MFDESs). The approaches involve converting the given linear and nonlinear
MFDEs with some initial conditions into equivalent Volterra integral equa- tions (VIE), and
applying the mentioned numerical approaches to the obtained VIES. Error bounds and convergence
theorems are discussed for each case, separately. Finally, illustra- tive and comparative examples are

provided to demonstrate the applications of the proposed methods and verify the theoretical results.

Keywords: Multi-term fractional initial value problem, Block-by-block method, Fuzzy

tarnsform, Nonlinear Volterra integral equation, weak singularity.
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NUMERICAL SOLUTION OF SINGULARLY
PERTURBED INITIAL VALUE PROBLEMS WITH
DELAY USING B-SPLINE WAVELETS

MEHRDAD LAKESTANI
Department of Applied Mathematics, University of Tabriz, Tabriz, Iran

mehrdadlakestani@yvyu.edu.tr

ABSTRACT

In this paper, we solve a singularly perturbed initial value problem with delay by using ¢ B-
Spline wavelets. The properties of these functions are provided, and by employing the operational
matrix of differentiation, a numerical method is genereted over some subintervals that reformulates
the problem into a system of algebraic equations. This system can be solved to find the approximate
solution. Numerical results demonstrate the efficiency of the method.

Keywords: Singularly perturbed problem; B-Spline wavelets; Delay differential equation.

REFERENCES

1. M. Lakestani, M. Dehghan, The solution of a second-order nonlinear differential equation with
Neumann boundary conditions using semi-orthogonal B-spline wavelets, International Journal of
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THE GAUSSIAN PELL NUMBERS VIA PERMANENTS AND DETERMINANT OF
TRIDIAGONAL MATRICES

Inci Giiltekin! Yasemin Tasyurdu? and Hiranur Karaca3
! Department of Mathematics, Atatiirk University, Erzurum, Turkey

igultekin@atauni.edu.tr,

2 Department of Mathematics, Erzincan University, Erzincan, Turkey

ytasyurdu@atauni.edu.tr,

3 Graduate School of Natural and Applied Sciences, Atatiirk University, Erzurum, Turkey

hiranur.karacal 7@ogr.atauni.edu.tr

Abstract

Gaussian number means representation as Complex numbers. Our goal in this work is
to give the Gaussian Pell numbers by using permanent and determinant of some tridiagonal

matrices.
Keywords: Permanent, Gaussian pell number, Tridiagonal matrix.
Introduction

The Fibonacci, Lucas, Pell and Pell-Lucas numbers have received much interest in
recent years and studied by a wide range of researchers in a variety of branches of mathematics,
including linear algebra, applied mathematics, and calculus. The investigation of Gaussian
numbers is a research topic of great interest. Gaussian numbers are complex numbers z = a +
ib, a,b € Z were investigated by Gauss in 1932 and the set of these numbers is denoted by
Z[i]. Furthermore, the study of Gaussian numbers is a very interesting academic field, and
various research have been done in this area. In 1963, Horadam [1] introduced complex
Fibonacci numbers and named them Gaussian Fibonacci numbers. In 1965, Jordan [2]
considered two complex number sequences and extended some of the characteristics associated

with usual Fibonacci sequences.
The Generalized Fibonacci sequences U, (p, q, a, b) are defined as follows

Un+1 = pUp + qUp_4 Up=0U;=1
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where p and g are nonzero real numbers and n > 1. If p = 2, q = 1 is taken in the
Generalized Fibonacci sequences U, (p, q, a, b), then the Pell sequences

{P,}=1{1,2,512,..}
is obtained [1] [3].
The Generalized Gaussian Fibonacci sequences U, (p, g, a, b) are defined as follows
GUpy1 =pGU, +qGU,_; GUy=a, GU; =Db
Where a and b are initial values [4]..
Definition 1: The Gaussian Pell numbers {GP, },5, are determined by:
GP, = 2GP,_, + GP,_,
With initial conditions GPy, = i, GP; = 1

If p=2,q=1, a=1i b=1istaken n the generalized Gaussian Fibonacci sequences

U,(p,q,a,b), then the Gaussian Pell sequences
{GP,}=1{i,1,2+1i,5+2i,12+5i,..}
is obtained [4].

LetA, = [ai j] be an nxn matrix and S,, is a symetric group of permutations over the

set {1,2, ... n}. The determinant of A matrix defined by
n
detA = z sgn(a) 1_[ Qia(i)
aES, i=1

where the sum ranges over all the permutations of the integers 1, 2,...,n. It can be denoted by
sgn(a) = 1 the signature of a, equal to +1 if a is the product an even number of

transposition and —1 otherwise. The permanent of A matrix is defined by
n
perA = Z Haia(i)
a€Sy i=1
where the summation extends over all permutations « of the symmetric group S, [5].
Main Results
The general formula for the n-th Gaussian Pell numbers is given by the following theorem..

Theorem 1:For integer n = 0 where GPy = i
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2] =]

GPpiq = z 2n-2k (” & k) + Z n-1-2k (” - i B k)

k=0 k=0

Proof: The proof can be completed using the inductive method. Let n = 0 be an integer. For
n < 2 where FJ =0
2
GP,=1veGP, =2+

Let n > 2 and equality (2) be true for n. In this case it must be shown that it is true for n + 1

From definition 1 and the inductive hypothesis

GPn.y = 2GP,,, + GP,

B 2
= ; on+1-2k (Tl ; k) + kzzo on-2k (Tl - 11 - k)
5 s
n Z on-1-2k (n - llc - k) 4 Z on-2-2k (n - 1% - k)
B = o
_ gntl (O) n kzzl on+1-2k (Tl ; ) n RZ;) on-1-2k (n — h - )

"z 2]
4 zn(nal)_l_ kzzl 2n—2k(n—li—k)+ kz:;) 2n—2—2k(n_12(_k)>

& n—(k+1) L n—(k+1)
=2l 4 kzzo 2”+1‘2(k+1)( a1 ) + kzzo 2n—1—2k( . )
T N =
+il2n 4 kZ; gn-20e+) (M 1k—+(1 + 1)) N kzzo -2k (1 lzc —ly

[z

n-—1

=
_ 1 12k (m—(k+1) Z 12k (n—(k+1)
_2”++kz02n (k+1 )+k_02” ( . )
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k+1 k

lnl lnz
+i z 2n22k Tl—Z—k 22n22k Tl-Z—k))

lnl
_ on+l Zznlzk n—(k+1)+1
+ i1 )

7]
+i (2" -+ ; an-2-2k (” —1- k)\

k+1 /
ln+1J
— on+l 4 z on+1-2k (n + i - k)
k=1

2]

: n n—2k (N —k
+il| 2" + z 2 ( K
k=1

lTl+1J ng
_ Z on+1-2k (TL + 11c — k) + iz on-2k (n ; k)

And the desired result is obtained. Thus, the proof is completed.

X
In the proof of Theorem is taken into consideration x <y = (

R

In this section, we define some tridiagonal matrix and than show that the permanent

)=0,x<0:(x

y) =0 and

and determinant of this matrices equal to the Gaussian Pell numbers.

Definition 2: We define a nxn tridiagonal matrix A = (a;;) withay, =2i—1, i # 1,a; =

20 Aj4q; = a;41 = 1 for 1 < i < nand 0 otherwise. That is,

2i—1 1 0 0 - 0 07

1 2 1 0 - 0 0

0o 1 2i 1 « 0 0
A= : P
0 0

2i 1

0 0 1 2l

4
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Then we give following Theorem.

Theorem 2: Let the matrix A be as in following.

2i-1 1 0 0 00
1 2 1 0 0 0
0o 1 2 1 00
A= : P
0 0
2i 1
0 0 1 2t

Then forn > 2
GPO = i,GPl = 1anddetA0 = 1
Gh, = (_i)n_ldetA(n—l)x(n—l)

where GP,is the nth-Gaussian Pell number

Proof: If the determinant is calculated according to the nth row

2i—1 1 0 0 -+ 0 07
1 20 1 o - 0 0
0 1 2 1 - 0 O
detAm = (D)™ det : P
0 0
20 0
0 0
1 Ha-nxm-1)
+2i(—1)" " detAm-1yx(n-1) (D
2i—1 1 0 0 - 0 07
1 20 1 o - 0 0
0 1 2i 1 - 0 O
det : : : .
0 0 0
0 0 0 2t 0

- 1 Ta-nx@m-1
If the determinant is calculated according to the last column,

2i—1 1 0 0 - 0 07
1 2i 1 0 0 0
0 1 2 1 - 0 0
det : E . = (_1)2n_2detA(n—2)x(n—2) (2)
0 0 C
0 0 20 0

1 o-nxm-1

If (2) is written instead of (1);

detAnxn = (_1)n+n_1(_1)2n_2detA(n—2)x(n—2) + 2i(_1)n+ndet‘4(n—1)x(n—1)
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= —detAm-2)x(n-2) + 2idetAm-1)x(n-1) 3)

If The inductive method is used to show that
GP, = (_i)n_ldetA(n—l)x(n—l)

Forn =2,

GP, = (—)* YdetA; = (iD)det[2i —1] = (—)2i—1)=2+1i
Let’s assume that it is true for n = k. Accordingly,
GPy = (—D)* 'detAg_1yxp-1)
Forn = k + 1, Let’s show that it is
GPrr1 = () detAyy
From the relation
GPyiq = 2GPy + GPy_4
GPriq = 2(=0D)*TdetAg_1yxp—1) + (=D ?detAg_ayxk-2)
= (=D*[2(=D) 7" detAg-1yxp-1) + (D2 detAg_2)xk-2)]
= (—D)*[2idetAg-1)x(k-1) — AetAg-2)x(k-2)]
From equation (3)
GPrr1 = () detAyy
Definition 3: We define a nxn tridiagonal matrix B= (b;;) with by = 2i — 1,0 # 1,b;; = 2i

biy1; =1 b;;11 = —1for 1 <i < nand 0 otherwise. That is,
2i—1 -1 0 0 0 0 7
1 2i -1 0 0 0
0 1 2 -1 0 0
B = : P
0 0
2t —1
0 0 1 2idm

Then we give following Theorem.
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Theorem 3:

2i-1 -1 0 0 - 0 0
1 2 -1 0 = 00
0 1 2 -1 - 00
B = T
0 0
2i -1
0 0 1 20

Then forn > 2

GPO =i,GP1= 1andPeT‘BO= 1
Gh, = (_i)n_lperB(n—l)x(n—l)

where GP,is the nth-Gaussian Pell number

Proof :We prove this by induction on n.

Gh, = (_i)n_lperB(n—l)x(n—l)
It s true for n = 2,

PerBle = a11 = (Zl - 1)
GP, = (—)'(2i — 1) = 2 +1i.

Let’s assume that it is true for n = k. Accordingly,

GP, = (_i)k_lpeTB(k—l)x(k—l)-

Forn = k + 1, Let’s show that it is
GPiyr = (=) PerByy
From the relation

GPk+1 = ZGPk + GPk—l

GPyyr = 2(=1)""PerB_1yxk-1) + (=) 2 PerB_zyx(k-2)
= (=D*[2(=1)"'PerB_1)xk-1) + (=) "*PerB(_z)x(k-2)]
= (—)*[2iPerB—1)x(k-1) = PerBk-2)x(k-2)] 4)

If we expand the Per By, by the Laplace expansion of a permanent with respect to the last row
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2i—1 -1 0 0 0 07
1 2i -1 0 0 0
0 1 2i -1 0 0
PeT'kak = 1. Per : : : .
0 0 0 )
20 0
0 o0
1 —a-nxmn-1
2i—1 -1 0 - 0 07
1 2i -1 0 0 0
0 1 [ -1 0 0
+ 2i. Per : :
0 0 _
0 0 20 0_
1 2i0m-1xm-1)
2i—1 -1 O 0 0 0
1 2i -1 0 0 0
0 1 2 -1 0 0
Per : P
0 0 0
2i
0 0 0
1 1Y m-xm-1)
by the Laplace expansion of a permanent with respect to the last coloumn
r 2i—1 -1 0 0 0 0 7
1 2i -1 0 0 0
0 1 2i -1 0 0
PerByy, = 1.(=1)Per : N .
0 0 )
0 0 2t 1
1 2i'n-2)xmn-2)
2i—1 -1 ©0 0 0 017
1 2i -1 0 0 0
0 1 2i -1 0 0
+ 2i.Per : :
0 0 0 .
0 0 21 O.
1 2i'm-1xm-1)

And then

PerBy,, = 1. (_1)PerB(k—2)x(k—2) + ZiPET'B(k_l)x(k_l)

If (5) is used to (4);

)

GPryq = (_i)k[ZiPerB(k—l)x(k—l) - PeTB(k—z)x(k—z)] = (—)*PerBixk
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Abstract

In this study, we introduce the class of demi-weak almost limited operators on a Banach
lattice as a generalization of weak almost limited operators defined by Elbour A., Machrafi N.,
and Moussa M. in 2015. Let E be a Banach lattice, an operator T: E — E is called a demi-weak
almost limited operator if for every sequence (x,) C E and every pairwise disjoint sequence

() € E' whenever x, >0, f, =0 and (£,(x,) — £, (T(x,)) =0 implies £,(x,) =0. We
examine the relationship between weak almost limited operators and demi-weak almost limited
operators. In addition, we establish a characterization of demi-weak almost limited operators.
Finally, we obtain some properties of the class of demi-weak almost limited operators.

Keywords: Weak almost limited operators; Demi-weak almost limited operators; Limited

operators; Banach lattice.

1.INTRODUCTION

The demi notation was first used by Petryshyn in 1966 [11]. Krichen and Regan studied
the class of weakly demicompact operators in 2019 [3]. After that, the class of demi Dunford-
Pettis operators was introduced by Benkhaled, Hajji and Jeribi [8]. The class of order weakly
demicompact operators was studied by Benkhaled, Elluech and Jeribi in 2020 [9]. Recently,
further studies on the demi class were introduced by Keles and Altin [6,7].

Elbour, Machrafi, and Moussa introduced the class of weak almost limited operators in
2015. Recall from [1] let E be a Banach space and F be a Banach lattice. ~ An operator
T:E — F is called a weak almost limited operator if f,,(T(x,)) =0 for every weakly null
sequence (x,) C E and every weak* null sequence (f,,) € F' with pairwise disjoint terms.
The class of all weak almost limited operators from E into F is denoted by Ly, (E, F).

In this study, we introduce the class of demi-weak almost limited operators on a Banach
lattice as a generalization of weak almost limited operators.

In this study, the identity operator is denoted by /. For all other undefined terms and
notations, we will adhere to the conventions in [4,5,10].
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2.MAIN RESULTS

Definition 2.1. Let E be a Banach lattice, an operator T: E — E is called a demi-weak almost
limited operator if for every sequence (x,) € E and every pairwise disjoint sequence

(f) € E' whenever x, -0, f, —0and (f,(xn) — f2(T(x,)) »0 implies f;(x,) »0. The
class of all demi-weak almost limited operators on E is denoted by DL,,,;(E).

Example 2.1 Let E be a Banach lattice. Then, al is a demi-weak almost limited operator on E
forall a # 1.

Indeed; assume that for every sequence (x,) C E and every pairwise disjoint sequence

(f,) C E' such that x, =0, f, =0 and (f,(x,) — af,(x,)) =0 . Thus, it follows that
fn(x,) (1 —a) =0, and hence f,,(x;,,) —0. This shows that a/ is a demi-weak almost limited
operator for all @ # 1.

Example 2.2 Let E = ¢,. Consider the sequence (e,,) € E whose the n-th term is one, and all
other terms are zero. It is well known that e, 50inE and (fn) € E' defined f,;:l; - R by
fn(@) = a,, for all @ = (a,) € l,. Then, each the sequence (f;,) is pairwise disjoint, f;, )

and (f,(e,) — frn(I(e)) = (0) =0 holds. On the other hand; since f,,(e,) = 1 for all n € N,
the identity operator on ¢ is not a demi- weak almost limited operator.

Example 2.3 Let n € N, and define the operator T,:cq = ¢y by T,(x) = XiL, x;e;. The
operator T, is a demi-weak almost limited operator. Now, define R,, = [ + T, for each n € N.
It is clear that R,, is not a demi-weak almost limited operator for each n € N.

Theorem 2.1 Let E be a Banach lattice. Then, every weak almost limited operator on E is
demi-weak almost limited.

Proof Let T:E — E be a weak almost limited operator. Assume that for every sequence

(x,) € E and every pairwise disjoint sequence (f;) € E'such that x, V—V>0, fn 2,0 and
(fn(x) = fu(T(x,))) —=0. It can be written as

fn(xn) = [fn(xn) - fn(T(xn))] + [fn(T(xn))]-
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From the assumption, the equality and T € L,,,; (E), it is obtained that f,,(x,) —=0. As a result,
T is a demi-weak almost limited operator.

It is given in Theorem 2.1 that every weak almost limited operator is a demi-weak almost
limited; however, the converse is not true in general.

Example 2.4 Let T:cy — ¢y be an operator and T = %I . Since [ is not demi-weak almost
limited from Example 2.2, I is not a weak almost limited operator. As a result, it is easily seen
that %I is not weak almost limited but T is a demi-weak almost limited operator from Example
2.1.

Example 2.5 Let T, S: ¢q — ¢ be operators defined by T = S = %I . By Example 2.1 T and §

are demi-weak almost limited operators. However, T +S =1 is not a demi-weak almost
limited operator from Example 2.2.

As a result, Example 2.5 shows that the class of demi-weak almost limited operators is not a
vector space.

Theorem 2.2 Let E be a Banach lattice, T:E — E be a weak almost limited operator and
S: E — E be a demi-weak almost limited operator. Then, T + S is demi-weak almost limited.

Proof Let (x,,) € E be a sequence and (f,) € E’ be a pairwise disjoint sequence such that

Xy 50, o0 and (f,(xn) — £ (T +S)(x,)) 0. Since T is a weak almost limited
operator, it is obtained that f,, (T'(x,)) —0. It can be written as

faGn) = fu(S(xn)) = f(n) — fu(T (xn)) + fu(T(x)) — fu(S(xn))
= fn(n) = o (T + 8)(x)) + fn(T (x2)).

From the hypothesis, the equality and T € L,4;(E), it is obtained that f,, (x,,) — f,(S(x,)) —0.
Since S € DL, (E), it is seen that f,(x,) —0. Thus, T + S is a demi-weak almost limited
operator.

Definition 2.2 Let E be a Banach lattice. £ has the weak almost limited-property
(wal-property) if for every weakly null sequence (x,) C E and every weak* null sequence
(f) < E' with pairwise disjoint terms, then f,, (x,) —0.
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Example 2.6 Let E = [;. E has the wal-propery. Indeed; assume that sequence (x,) C E,
disjoint sequence (f;,) € E' such that x,, %0 and fn 2,0 . Since E has the Schur property,

Il
X, =0 [4], and from Banach Steinhaus Theorem [2], it 1is obtained that

sup{|Ifpll :nEN} =M < . On the other hand,
n—-o0o
0< |fn(xn)| < [Ifallllxall < Mllx, | > 0. Hence, fn(xn) - 0.

Example 2.7 All finite-dimensional spaces have the wal-property.
For the next theorem, we need some notations.

Lewai(E) == {T| T: E — E continuous weak almost limited operator}

DL.ya(E) ={T| T:E — E continuous demi — weak almost limited operator}
Theorem 2.3 Let E be a Banach lattice. Then, the following statements are equivalent.

[) E has the wal-property.
it) Lewar(E)= DLeywai (E).

Proof (i) = (ii) It is known that L.,,4;(E) € DL.yq (E) from Theorem 2.1. Let (x,) C E

w w*
be a sequence, (f;,) € E' be a disjoint sequence such that x, -0 and f,, >0 and let T be a
continuous demi-weak almost limited operator. Given that T is a continuous operator, it is

obtained that T (x,,) Zo. Since E has the wal-property, it follows that f,, (T (x,)) —0. Thus, T
is demi-weak almost limited.

(ii) = (i) Let Leyq(E)= DL¢yq(E) . Since ée DLewa(E) from Example 2.1, then
é € Lewai(E). Thus, I € Lgy,q(E). Hence, E has wal-property from Definition 2.2.

Conclusion 2.1 Let E be a Banach lattice. Then, the following statements are equivalent:

i) All continuous operators on E are demi-weak almost limited operator.
(ii) I: E - E is a demi-weak almost limited operator.

(iii) E has the wal-property.
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3.CONCLUSIONS

In this study, the class of demi-weak almost limited operators on a Banach lattice is introduced
as a generalization of the weak almost limited operators defined by Elbour A., Machrafi N., and
Moussa M. in 2015. It is shown that the class of demi- weak almost limited operators is not
generally a vector space. In addition, the relationship between weak almost limited operators
and demi- weak almost limited operators is studied. Moreover, it is concluded that the class of
demi-weak almost limited operators includes the class of weak almost limited operators.
Finally, the wal-property is defined on Banach lattice E, and a characterization of the wal-
property is examined in terms of continuous demi-weak almost limited operators.
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A STUDY ON WARDOWSKI CONTRACTION IN A-METRIC SPACES
SUHEYLA ELMAS *AND ALEYNA KAMBER OZEI?2
Abstract

In this writing, we explore Wardowski’s contraction principle for F -contraction mappings
and demonstrate the existence and uniqueness o fixed points in A -Metric Spaces.

Introduction and preliminaries

The Banach contraction principle (BCP) [1] is widely regarded as one of the most signi cant
results in metric xed point theory, largely in view of its simplicity and the practicality with
which it can be applied across various mathematical disciplines. The theory of xed points
combines ideas from topology, analysis, and geometry to investigate the existence and
uniqueness of fixed points of a map. Over time, the BCP hasundergone a variety of
generalizations in diferent directions. For example, Wardowski (2012) [2] extended the BCP
and formulated the F -contraction , which inspired a range of subsequent studies on F -
contractions more, [3], [4], [5]and [6]

Definition: [2]Let (H, A) be a metric space. A map H:w — w is called to be a F —
contractions if there T > 0 such that for any w,@w € H

[d(HW, Hy)>0=>7T+F (d(HW,Hw) < F(d(w, w)))]

Here F: R, — R is a map fulfilling the following criterias:
(F1) F is strictly increasing, via, for every w,@w € R, suchthat w < @w , H,, < Hy

(F2) For all sequence {)y,}n=1 € R, lim y,, = 0 iff lim F(y,) = —©
n—-oo n—-oo
(F3) There is k € (0,1) such that lirgl+ Y*F(x)=0
X—)

The set F is defined as the collection of whole maps fulfilling states (F1) — (F3). Géhler
(1963) [8] presented the concept of a 2- metrict space and argued that this space is a
generalization of an ordinary metric space. For valuable investigations on fixed point results,
Dhage (1992) [9] recommended refining the basic framework of the 2-metric space. In (1984)
[10] introduced the concept of a D-metric space. Naidu et al. (2004) [11] demonstrated that
the notions of convergent sequences and sequential continuity are not clearly de ned in D -
metric spaces. In (2005) [12], they highlighted certain limitations in the notion of open balls
in D -metric spaces. The authors (2006) [13] developed the notion of G-metric space and
examined its topological characteristics. Unlike the theory of G-metric spaces, here states

(D1) D(w,@,) =0,V w,w, € H and equality is valid if w = @ = y where D: H> - R
is the function;
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was replaced by the following three separate axioms, here G:H? is the function G:H> - R
is the function

GHGWw,wyY)=0ifw=w =9y ,Vw,w, Y EH
(G2)Gw,w,w) =20,Vw,w,€H
G2 Gw,w,w) < G(w,m,Y),Vw, @, Y EHviaw #

Sedghi et al. (2007) [14] pointed out that condition (D1) could be substituted by just two
axioms and thereby proposed the concept of a D* - metric space.

Remark 1. Each G -metric space is a D* metric space as well.

The authors (2012) [15] highlighted that condition (G3) is a distinct limitation of the G metric
space, whereas the symmetry condition was identifed as a shared weakness in both D* and G -
metric spaces. To tackle these problems, these authors developed a new generalized metric
space referred to as a S metric space.

Remark 2.[7] Each D* -metric space is also a S -metric space.

Remark 3. [7]The S -metric space serves as a broader concept that includes both the G -
metric space and the D*metric space.

Abbas, et al. (2015) [7] present the notion of an A-metric space as outlined:

Definition 2. [7] Let be H a nonvoid set. A map A:H" — [0,) is said an A-metric space is
said on if for any w; ,i = 1,2,3, ..., n the following terms apply:

1) A(wy, wyws, oo, Wy_q, W) = 0

2)A(W1,W2,W3, ...,Wn_l,Wn) =0 W, =W, =Wg==W,_{ =W,
3)A(W1, W, W3, ...,Wn_l,Wn) <A (Wl, Wy, Wy, ...,Wl(n_l),)/)

+A (Wz, Wo, Wy, ..., Wz(n_l),)/)

TAWnm-1) Wn-1) Wn-1), = Wn-1)(n_yy» ¥)

A(Wn, W, Wn, oo, Wn, 0 Y)
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The dual (H, A) is said an A-metric space. From here it can be seen that the A-metric space is
actually the n -dimensional S -metric space.

Example 1. Let H = R. Describe a map A: H" — [0, ) as
A(Wl, Wy W3, oo, Wy_q, Wn) = |W(n) +Woopy ot w, - (n— 1)W1|

+|W(n) + W(n—l) + -+ W3 — (Tl — 2)W2|

Hwey + Wa-1) + Wa-2) = 3W-3)
HWeny + Wen-1) = 2Wen2)
Hweny + W]

Then (H, A) is an A-metric space.

Encouraged by these points, we first introduce and examine F-contraction in A-metric space
as indicated below:

Definition 3.Let (H, A) be an A-metric space. A map H: H — H is called to be F-contraction
if there is T > 0 such that for any w, @ € H,

A(Hy,, Hy, Hyy, ..., Hy, Hy) > 0=
T + F(Hy, Hy, Hy, ..., Hy, Hy) < F(A(w, w,w, ..., W, ®))
Here F: R, — R is a satisfying the following states:
(F1) F is strictly increasing,via, for every w,@w € R, suchthatw < w, F(w) < F(®)

(F1) For all sequence {y,}n=1 € R, lim y,, = 0 iff lim F(y,) = —»©
n—-oo n-—-oo
(F3) There is k € (0,1) such that lil‘(r)1+ x*F(x) =0
X—)

Lemma 1. Let F: R, — R be an increasing map and {x,,}=; € R,. Then the following terms
apply:

(a) If lim F(x,) = —x, then lim y,, = 0
n-oo n—oo
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(D)If infF = —oo and lim y,, = 0,then lim F(x,) = —©
n—-oo n—-oo

By proving Lemma 1., Secelan [17] verified that the condition (F2) in Definition 1. can be
substituted with an equivalent, simpler condition,

(F2) infF = —0
as an alternative, additionally, with

(F2") there exist a sequence {¥,}5n=; € R, such that lim F(x,) = —
n—-oo

In the current paper, we use F-contraction maps in A-metric spaces and aim to extend
Wardowski’s theorem to A-metric spaces. There has been a rising interest in the
generalization of classical metric spaces in the past few years. In this framework, 2-metric, D-
metric, and G-metric spaces are viewed as generalized forms of usual metric spaces. The most
crucial of these generalizations is A-metric spaces, since this space was developed to measure
the distance between npoints at the same time.

Theorem 1.Let (H, A) be a complete A-metric space and letamap H:H - Hbea F
contraction. Suppose F € &% and t > 0 such that for any w,@w € H

A(H,, Hy, Hyyy - Hypy Hy) > 0 =
T+ F(H,,, H,,,Hy, ..., H,, Hy) < F(A(w,w,w, ..., w,®))

Then H has a unique fixed point w* € H and for every w, € H the sequence {H&‘,o} converges
tow”.

Proof. Select w, € H express a sequence {w, }5—; by
w, = H, ,w, = H, =H} ,...,Wn41 = Hy, = Hj*! for eachn € N.

If there is n € N such that A(Wn, Wy, Wy, ey, Wy, Hwn) = 0 the proof is concluded. Thus,we

presume that for every n € N.

0< A(wn, Wn, Wy, oo, Wy, Hy ) = A(Hy._ Hy o Hy s Hy S Hy )

Foralln € N , we attain

T+ F(A(Hy,_, Hy,_ Hy s Hyo  Hy ) < F(AWne1, Woog, Wn_y, e, Weg, W)
Le.,
F(A(Hy,_ Hy,_ Hy e Hy S Hy ) < F(AWn_q, Wyeq, Wn_y, o, Wp_g, W) — T

Reapplying this method,we arrive at

H

Wn-1’

H,

F(A(H, wyr o Hy o Hi ) (2.3)

n-1’
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S F(A(Wyp_1, Wy, Wy— 1y eeey Wy, Wy) — T

H,

< F(A(Hy_yr oy By oor gy o)) = T

n-2’

< F (A((Wn_z; Wn—2,Wn_2, -, Wn_2, Wn—l))) —2t

IA

F (A(Hwn—s’ HWn—3' HWn—s' e HWn—S' HWTI_Z)) — 2t
< F (A((Wn—z»Wn—s'Wn—s' vy Wno3, Wn—Z))) -3t

H

IA

F (A(Hy,_, H

Wn—4’

Wn—g? " HWn_4' Hwn_3)) — 37

< F(A((WO,WO,WO, ...,WO,Wl))) - nt

Due to (2.3),we acquire lim F(A(H,,, _,Hy, _,Hy ., Hy  H, ))) = —o which
n—-oo

n-1’

together with (F2) and Lemmal gives

lim A(H,, ., Hy _ Hy . Hy Hy, )=0

n—-oo

Le.,

lim A(Wn, Wp, W, oo, W, Hy, ) =0 (2.4)

n-—-oo

Next, we maintain that {w,, }5,—; is a Cauchy sequence .Reasoning by contradiction, we
presume that there exist € > 0 and sequences {¥,}r=1, {9,}5=1 € N such that

Xn >0, >nforeveryn € N .
AWy, Wy s Wiy o, Wy, Wy ) =E (2.5)
(W10 Wy 13 Won_1r wees Wy W, ) <E (2.6)
So we have
e< A(Wxn, Wy s Wy ey W ngn)
<(n- 1)A(WXn'WXn' Wy, ...,WXn,WXn_l) + AWy, , Wy, Wy, ey Wo , Wy )
=(n- 1)A(WXn'WXn'WXn' ""WXn'WXn—l) T AWy, Wy Wa_po s W10 W)

< (0= AWy Wy Wy oo Wiy W, ) FE
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<(n-1A4 (Wxn_l, Wy oWy ey Wy HWXn—l) +€
It follow from (2.4) and last sentences
lim A(Wxn, Wis Wy woos W W,gn) =c 2.7)

n—-oo

On the other hand from (2.4) there is N € N such that

&
AWy Wy s Wy oo s Wy, HWXn) < D) (2.8)
&
AW, Wo,, Wo,, s Wo,, Hyy ) <2, (2.9)
Vy > 9.

Next we affirm that for any Vy > 9

A(Hy s gy H oo g iy, ) = AWy Wy Wy s Wy W) >0 V2
N (2.10)

Arguing by contradiction there exist .4 > N such that

A(W)Mtﬂ’ Wy wrv Wxurr = Wxusr W19,/ﬂ+1) =0 (2.11)

It follows from (2.5), (2.6), (2.8), (2.9) and (2.11) that

< A(Wxn'Wxn'Wxn' ...,Wxn,W,gn)
<(n- 1)A(Wxn, Wiy Wy s ooy Wy, WXn+1) + AWy, Wy, , Wy, , o) Wy, Wy . )
<(n- 1)A(Wxn, Wy s Wy ey Wy WXn+1) AWy, Wy Wy e Wy W)

<(n- 1)A(WXn’ Wi Wxns =0 Wy WXn+1) +(n-

1) A(WXn+1’ WXn+1WXn+1’ e WXn+1’ W'9n+1) +A (Wﬁn' Wﬁn’ Wﬁn’ e Wﬁn’ W19n+1)
<(n- 1)A(Wxn, Wy, Wy ey Wy WXnH) + (n—
1) A(W)(n+1’ WXn+1WXn+1’ e WXn+1' W19n+1) +A( W'9n+1’ W19n+1’ W19n+1’ e 1/1/19n+1’ Wﬁn)

<Zt0+:
=770%%

This contradiction established the relation (2.10).Consequently, it can be inferred from (2.10)
and the hypothesis of the theorem that

T+ A (HWXn’H HWx , o, H H ) < A(Wxn'Wxn'Wxn' ...,Wxn,wﬁn) vVn €N

Wxn n Wxn’  "Won

From (F3, (2.7) and (2.12) we gather T + F(&) < F(¢). This contradiction
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shows that {w,, };-—is a Cauchy sequence. Owing to completeness of (H, 4) , {wy, };=, converges
the some point w in H. Finally, the continuity of H yields.

A(Hyy, Hy, Hy, oo, Hyp,w) = Tim (Hy,  Hy, Hyy ey Hy )

= Iim (Xn+1) Xn+1 Xn+1s -0 Xnt+1 Xn)
n—->oo
=A(w*,w*,w*, ..., w", w")

At this point, let us illustrate that H possesses at most one xed point. In fact, if w,@ € H be to
distinctive xed points of H, namely, H,, = w # @ = Hy

Therefore
A(H,,H,,H,,.. H,, H;) =Aw,w,w,..,w,@) >0
then we get
F(A(w,w,w, ...,w,w)) = F(A(H,, Hy, H,, ..., Hy, Hg))

<t+ F(A(H,,H,,H,, .., H,, H))
< F(A(W, W, W, ..., W, w))

which is a contradiction. Thereof, the xed point is a unique.
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Abstract

In this writing, we investigate fixed points of F —contraction in an abstract space. Additionally,
the effectiveness of our work is confirmed through appropriate examples.

Keywords: S —metric space; Fixed point; F —contraction.

1.INTRODUCTION

The Banach contraction principle (BCP) [1] is widely regarded as one of the most significant results
in metric fixed point theory, largely due to its simplicity and the practicality with which it can be
applied across various mathematical disciplines. Over time, the BCP has undergone a variety of
generalizations in different directions. Recently, Sedghi et al [13] introduced the concept of

S —metric space which is different from other space and proved fixed point theorems in S —metric
space. They also gives some examples of S — metric spaces which shows that S —metric space is
different form other spaces. In this article, we will denote by N the set of all natural numbers, by R
the set of all real numbers, and by R* the set of all positive real numbers. The famous European
mathematician Stefan Banach proved a theorem in 1922, which was a great first. Since the day he
proved his theorem, scientists have been publishing studies on contraction mappings and metric
spaces. Important works on S —metric spaces are the papers of S. Sedghi. [13]
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2.GENERAL PROPERTIES OF METHOD

Theorem 1: Let (M,dsf) be a complete S —metric space and consider a mapping
0: M — M. Assume that for all n,p € M with n # p, the condition

ds (en) en» en) <ds(m,n, W

holds. Then, the mapping 6 possesses a unique fixed point in M.

In 2008, Suzuki [2] provided generalized versions of Edelstein's results in the context of
complete S —metric spaces.

Theorem 2: Let (M, dg) be a complete S—metric space, and let 8: M — M be a
self-mapping. Suppose that for all n,u € M with n # ,

%ds(n,n, 0,) < dsMm,n, W) = ds(0,,0,,0,) < ds(m,n, p) then 6 has aunique
2
fixed point in M.

In 2012, Wardowski [11] introduced a novel class of contraction mappings, known as F-
contractions, and established a new fixed point theorem related to them. Through this
contribution, Wardowski [11] offered a new perspective on the Banach contraction
principle, distinct from the classical formulations found in the literature. The concept of
F-contraction proposed by Wardowski is defined the as follows.

Definition 1. Let X be a non-empty set and let dg: X3 — [0,00) Forall Vn,u, &, t € X
let S be a function satisfying the following conditions:

1-)ds(m, 1, $) 20,

2_) ds(’l:#:f) =0 n=u= $

3—-)ds(m 1, ) < S(mm,t) + S t) + S, S, 0).

In this case, dg is called an S —metric on X, and the pair (X, ds) is called an S —metric
space.

Definition 2: Let (M, ds) be a S-metric space. A mapping 6: M — M is said to be an
F —contraction if there exists A > 0 such that Vn, u € M,

dy(6y,0,,6,) > 0= A+F(dy(6,,6,,6,))
< F(ds(nm, W) (D

where F: RT — R is a mapping satisfying the following conditions:

(F1) F is strictly increasing, i.e. for all m, u € R* such thatn < p, F() < F(p);

(F2) For each sequence {n,}o=; of positive numbers, lim,,_,,,(1,) = 0 if and only if
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limy, o F(nn) = —00;

(F3) There exist k € (0,1) such that lim,_,n*.F(1) = 0

We denote by F, the set of all functions satisfying the conditions (F1)-(F3). For examples of the
function F the reader is referred to [12] and [11].

Remark 1: Based on conditions (F1) and (1), it is straightforward to deduce that every
F —contraction is necessarily a continuous function.

Theorem 3: Let (M,ds) be a complete S—metric space and suppose let 6: M - M
is an F —contraction. Then 0 possesses a unique fixed point n* € M, and for any point

N € M the sequence {n,}nen converges to n*. Recently, Secelean [12] presented the

following results:

Lemma 1:Let F: Rt — R be an increasing function, and let {n,}n=1 be a sequence of positive
real numbers.

Then the following statements are true:

@ if lim, ,F(Mn) = —oo, thenlim, ,;,Mn =0

(b) if inf F = —oo, and lim,_,,,nn = 0 then lim,,_,,,F(np) = —oo.

Using Lemma 1, Secelean demonstrated that the condition (F2) from Definition 2 can be
equivalently replaced with a simpler condition:

(F2") infF = —oo
or also,by

(F2'") There exist a sequence {nN,}n=; positive
real numbers such that

Remark 2: Define F:R* — Rby F,;(1) = Inn. In this setting, F, belongs to the
class F. Notice that whan F = F,,, the corresponding F -contraction coincides with the
classical Banach contraction. Consequently, every Banach contraction is a particular case

of an F -contractions. Nevertheless, there are also F -contractions that lie outside the
Banach framework (see [11],[12]).
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Rather than imposing condition (F3) from Definition 2, we replace it here with the
following simpler requirement:

(F3") F is continuous on (0,00).

We let I denote the family of all functions satisfying (F1), (F2"), and (F3").
Example 1: Consider the functions F1(m) = (=1)/n, F2(m) = (—-1)/n+n,
Fz(m) =(1/1—¢e"), Fa(m) = (1/e" —e™). Then it follows that F;,F,, F;,F, € F.

Remark 3: It should be noted that the condition (F3) and (F3") are not dependent on
one another.
For istance, for p > 1, the function F()) = —1/n? satisfies the conditions (F1) and
(F2), yet does not satisfy (F3); thus, 3 & F. Alternatively
F(n) = —=1/(m + [n]¢, where [n] denotes the greatest integer less than or equal to 1,
andt € (0,1/n). For n> 1, this function meets the criteria (F1) and (F2)
but fails to meet (F3); nonetheless, it satisfies (F3"), while it satisfies the condition
(F3) for any k € (1/n,1). Therefore, F £ 3. Also, if we take
F (M) =Inn, then F € F and F € J. Therefore, F NI # Q.

Motivated by Remark 3, we reformulate Wardowski’s result [11] by allowing the
contraction to involve functions F from the class J reather than F € F. We then
introduce the notion of an F -Suzuki contraction and state a corresponding variant
of Theorem 3.

Definition 3: Let (M, dg) be an S —metric space. A mapping 6: M — M is called an F -
Suzuki contraction if there exists a constant A > 0 such that for alln,u € M with 6y #
Ou implication

1/2.ds(m,n,0n) < ds(n,n, 1) = A+ F(ds(6n,0n,0)) < F(ds(n,n, W),

holds, where F € 5.
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3.APPLICATIONS
Example 2 : Given M = (0, 00) let

dsmwd=M—pl+p=0¢+IC—ml, VnuwieM

and
0(m) =mn(n +2)

be the metric and function, respectively, with the function,

F(t) = ¢
5
We aim to show that for,

We have

8(n) = In(n + 2)

and

O(W) =m(u+2) npeM

ds(6n,6n,6p) = [In(n + 2) — In(u + 2)| + [In(n + 2) — In(n + 2)|

= 2. |In(n + 2) — In(p + 2)|

dsmnw) = —pl+u—n]

=2.In—uy
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2
F(ds(mnw) = =n—ul
2
F(ds(6n,6n,0p)) = = IIn(m +2) —In(u + 2)]

from the condition of the theorem,

2 2
At+clntMm+2) —n(u+2)[<chn—ul
Therefore, A > 0 is found to satisfy the inequality.

Letn* be the fixed point of the
6() =In(n +2)

transformation and there exist n* such that

n(M*+2)=n"=>0*+2)=e"
be
n* = 1,146.

Let’s define an array with initial value ny > 0;
Nn+1 = 6(Mp)

=In(m, + 2).

N1 = In(ne + 2)
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Ny = ln(T]l + 2) =ln(ln(n0 + 2) + 2)

N3 = In(M, + 2) =In(In(In(ny + 2)) + 2)

In(n+2) =n

That is, for n > 0 the series converges decreasingly to n*.

4.CONCLUSIONS

Theorem 3: Let M be a complete S —metric space. Suppose 6: M — M isa F —contraction
assume F € F and there exist A > 0 such that for,

Then 6 has a unique fixed point n* € M and for every n, € M the sequence {6"1¢}n=, convers to

*

n.

Proof: Choose 7y € M and define a sequence
M= 01, Nz = 61 =677, ...
Mn+1=6Mn=0"""ng vneN (2)

In the context of the S-metric space when dg(My,, Mn, Nn+1) > 0 the given condition
A+ F(ds(Mn, My Mn+1)) = F((ds(Mn, iy M 1))

holds for a chosen 4 > 0.

This satisfies the definition of an § —metric space, implying that there exist a unige
fixed point n* € M for the mapping 6, and for every 1y € M the sequence {61 }o0
converges to n*.

Ifthere exist n € N such that dg(n,, Ny, ON,) = 0 the proof is complete so we assume that
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0 < ds(Mn, N, ONn) = ds (Gnn_l,enn-l, 9%) vn € N 3)
for any n € N we have

) A + F(ds(enn—lf 9Tln—1, 9Tln)) < ds (T]n—l' Nn-1 rln)
i.e
F(ds(8Nn-1,6Mn—1,6Mn)) < ds(Mn—1,Mn-1,Mn) — 4
Repeating this process we get ;

F(ds(enn—lf 9T]n—1, enn)) < F(ds(nn—l' Nn-1, nn)) -4
= F(ds(enn—Zf OMn—2, 9T1n-1)) -2
< F(ds(nn—z' Nn-2, nn—l)) - 22
= F(ds(enn—Br ONn—-s, erIn—Z)) —2A
< F(ds(nn—3' Nn-3» T'In—z)) - 34

F(ds(Mo,Mo,N1)) — A, 1)

from (4) we obtain lim F (dS(Gnn_l, oMp-1, Gnn)) = —oo, which together with (F2") and lemma 1
n—oo

gives,

lim F(ds(8Mn—1,0Mn-1,nn)) # 0

ie
rlli_fgo(ds(rln' Nn, enn)) =0.

Now we claim that {n,};, is a cauchy sequence. Arguing by contradiction,

we assume that there exist € > 0 and sequences {p(n)}=; and {w(n)};=, of natural numbers
such that

p(n) > w(n) >, ds(np(n)rnp(n)' nw(n)) =0, ds(np(n)—ll Npm)-1 nw(n)) <e&

(6)
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so, we have

& S ds(np(n),np(n): na)(n))
< ds(np(n)’np(n)'np(n)—l) + ds(np(n)—l’np(“)‘l’n‘”(n))

< ds(Mp(ny Moy Np(my-1) + €
= ds(Mpm)-1 Npm)—=1, OMpmy-1) + €

It follows from (5) and the above inequality that,
Tim ds(Mp () Mpe) o) = £ %)

On the other hand, from (5) there exists N € N, such that

&
dS (np(n): np(n); Hr’p(n)) < Z

and
&
ds(nw(n)r Nwm), enw(n)) < Z Vn = N. (8)
Next, we claim that
ds(enp(n)» enp(n)» an(n))= ds(nﬁ(n)+1: Npm)+1/ T]ou(n)+1) >0 Vn € N. 9

Arguing by contradiction, there exists m > N such that

ds(rlp(m)+1: T]p(m)+1"r]w(m)+1) =0 (10)

It follows from (6), (8), and (10) that,

e< dS (rlp(m)! Np(m)» T]w(m))
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< ds(Mpamy Moy Npmy+1) + ds(Mpmy+1 Np(my+1 Nwo(m))
= ds(np(m):np(m)' T]p(m)+1) + ds(np(m)+1' T]p(m)+1v nw(m)+1)
+ ds(nw(m)+1' Nw(m)+1» T]w(m))
= ds(Mpm) Mptm) OMpmy) + ds(Mp(m)+1 Np(m)+1 No(my+1)
+ ds(No(m)» N (m) ‘znw(m)) .
< Z + 2 + Z

2

This contradiction establishes the realition (9). Therefore, it follows from (9) and the
assumption of the theorem that

A+ F(ds(enp(n)r enp(n)' enw(n))) < F(ds(np(n)r np(n)r nw(n))) Vn €N (11)
From condition (F3"), equation (7), and relation (11), it follows that

A+ F(e) < F(e).

Which leads to a contradiction.

This result confirms that the sequence {1, }n=; is a Cauchy sequence. Due to the completeness of the
space (M, d;), the sequence {n,}n=, converges to a point € M. By the continuity of the mapping
0, we obtain the following:

ds(6m, 6n,m) = lim ds (61, 61y, M)
= 1111—r>rolo ds(nn+1:nn+1' nn) = ds(n*' n, 11*) =0
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Now we demonstrate that the mapping 0 admits at most one fixed point. Suppose for the
sake of contradiction, that there exist 17, u € M such that they are two distinct fixed points of 6,
meaning, , On = 1 # p = 0. Therefore,

dg(6n, 6n,8p) =ds(n,n, 1) >0,
then we get, which is a contradiction
F(ds(n,w) = F(ds(6n, 61, 610)

< F(ds(mn, W),

which is a contradiction. Therefore, the fixed point is unique.
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Abstract

Fractional calculus operators deal with investigatin and applications of integrals and
derivatives of arbitrary (real or complex) order. There are many definitions of fractional integral
and fractional derivatives of different types. Object of this talk is to present an introductory
overview of the theory of an integral operator of fractional calculus known as generalized
proportional fractional integral. We also show a fractional integral inequality whose proof based

on techniques to the existing literature.

Keywords: Generalized proportional fractional integral; Inequality; Operator.

1.INTRODUCTION

Fractional calculus was developed as a generalization (extension ) of the classical calculus, in
which both integrals and derivatives order can take real or complex number. Fractional integrals and
derivatives are important since they have many application in science and technology. In particularly,
fractional operators are excellent tools to use in modeling long-memory processes and many
phenomena that appear in physics, chemistry, electricity, mechanics and many other disciplines. Since
there are several reasons which lead to the fractional-order models, in the literature, there are many
fractional operators. A very important form of fractional integral is given by the Riemann - Liouville
integral. For a integrable function g: [a,b] = R, of order § € (0, o), left Riemann — Liouville

fractional integral is given as

12+g(x) = %f(x — )0 1g(t)dt x € [a,b]

and right Riemann — Liouville fractional integral is given as

b
1
IP-g(x) = @j(t —x)%" 1 g(t)dt x € [a,b].

Here I'(§) is the well-known gamma function given by
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[oe]

r') = f 91 e Tdr.

0

2.GENERAL PROPERTIES OF METHOD

Let 8 € (0, 0) be the order, p € (0,1] be proportion. For a integrable function
g:[a,b] = R, the left generalized proportional fractional integral is given as

16'p _ 1 X ijl(x—t) 5—-1 d b
o g(x) = 5T(0) e (x —t)°" " g(t)dt x € [a, b]
a
and right generalized proportional fractional integral is given as

b
Il‘f'_”g(x) = 51“(6 j —x)% 1 g(t)dt x € [a,b].

X

The left and right generalized proportional fractional integral is introduced by Jarad et al. in
[3]. Given the function g:[3,7] = R, g(x) = In(x) the generalized proportional fractional

integral of order /5 is given as

pl(x )

/s» In(x) = — )5 1In(t) dt x € [a, b].
3

pVsT (\/_ )/ f
More discussion on generalized proportional fractional calculus can be found in [1,2,4]

Teorem 2.1. ([5]) Let a function g: [a, b] = R be decreasing, positive and continuous. Let
a<x<b,0>0,0<k<p,pe(01]andd,s € (0,). Then the left generalized
proportional fractional integral satisfy

I2P[gP 2P [(x — )P g*(0)] + [gﬂ(x)]l‘”’[(x SORAIN
12710 — )2 gP OIL T [k (O] + 1P [(x — @) gB ()P [g ol -
3.APPLICATIONS

Proof of the next theorem follows exactly the same line of reasoning as the proof of
[5]. The next lemma is actually implicit in [5].

Theorem 3.1. Let a function g: [a, b] = R be increasing, positive and continuous. Let a <
x<b,0>0,0<k<pB,pe€(0,1]andd,s € (0,). Then the left generalized proportional
fractional integral satisty
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1P [gP O)I2F[(x — )0 g* ()] + P [gP 12 [(x — @)0g @] _
12P[(x — )2 gP (ISP [g* ()] + ISP [(x — )0 gB ()P g o]

Proof 1It's obvious that for t,y € [a, x] we have
(- = - @) (¥ (®) - g# () < 0 (3.1)
From (3.1) , we have

-a)?gF )+ (- a)l g ) - (v —a)gP () — (t— )PP (1) <0 (3,2)

Define a function F such that

p=i.,._
F(x,t) = p O )81,

1
SON

It's obvious that for each t € (a,x),x € (a, b] then F(x,t) > 0. Now if we multiply (3.1) by

Fx, g (t) = 50 - p1gk(r)

1
EON

we obtain

Fix,0)[(y —a)?gP () + (t — )0 9P (y) — v — )0 g~ ()
—(t-a)gP*D]g"®)

-1
Pl(x-

:(y—a)epal_‘(6)e p

O(x - )51 gk (D) gh* (1)

1 Pyt
+(t — a)9p5r'(5) e v T~ )0 1gk (D gF ()

P l(x—t)

1
—(y—a)? O 0 1g* () gP ()

—(t-a)P e O — P 1gk (D) gh k() < 0

Sr(a)

Now, integrating over (a, x) with respect to t we obtain

X

J T (e~ pS1gh(e)y dt

a

(y —a)®

6r(5
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+gP7* ()

X
pl(xf) _6-1(p _ )0 4k
) e 0%t — @) g (D)de
a

_ 1 Pt 1
—(y—a)fgFf k(y)parw)afe P (x — )5 1gk(t)d ¢t

X
- f ep%(x_t)(x — )% 1 (t—a)lgP()dt <0
p°r(6) -
a

It follows from this
(v — 1P [gP (O] + P *IP [(x — ) g* ()]

~(y = ) gPF* I [g* ()] = 127 [(x — @)° P ()] (3.3)

By multiplying both sides of (3.3) by

Pl(x—y) _
P (= )Lk (y)

Fx,y)g*() = ST

where y € (a, x),x € (a, b]. Then integrating this resultant over (a, x) with respect to y we
obtain

12P[gP @12 [ — @)° g* ()] + L [gP ] 17 [(x — )2 g* ()]
—12P[(x = ) gP 1P [g* ()] = I [(x — )0 g () ]127 [g* ()] < 0. (3.4)
Now, we achieve the desired inequality by dividing (3.4) by
127G = )2 gP |12 [g* (0] + 127 [ — )2 gF () |127 [g* ().
4.CONCLUSIONS

In this talk, we presented a inequality whose proof method based on paper of Rahman
et al. [5]. Our constraint the functions must be increasing. It will be a good idea to investigate
validation of the inequality for more general class of constraints.
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Abstract

In this study, a proposed model describing the propagation of a computer virus in the
network with antidote in a vulnerable system is analyzed. Using the Laplace Adomian
Decomposition Method (LADM), the model's analytical and approximate-analytical solutions
are determined. These solutions are found in the form of fast converging series that portray the
system dynamics accurately. The efficiency of the method was tested and the validity of the
introduced fractional-order model was proved through the numerical simulations.

Keywords: Caputo fractional derivative; Computer Virus Propagation; Laplace Adomian

decomposition; Nonlinear system.

1.Introduction

A computer virus is a type of malicious software program that spreads between systems by
replicating itself, often disrupting operations or compromising data security. To understand
and control the spread of such viruses in a network, researchers use mathematical models that
simulate infection dynamics among computers. These models often draw inspiration from
epidemiological models used in biology, such as the SIR or SAIR models, where each
computer (or node) can transition between states like susceptible, infected, and recovered. By
analyzing these models, it becomes possible to predict outbreak patterns, evaluate the impact
of security measures, and optimize virus containment strategies.

Many dynamical models describing propagation of computer viruses have been established by
scholars at home and abroad. Particularly the classic epidemic models, such as computer virus
propagation model [1] model, SIRS [2—4] model, SEIRS model [5], and SEIQRS model [6, 7],
are used to investigate the spreading law of computer viruses due to the common feature
between the computer virus and the biological virus. Some computer virus models with
infectivity in both seizing and latent computers have been also proposed by Yang et al. [8—12].
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In this research, we are also exploring the potential of using the Laplace Adomian
decomposition method (LADM) to solve the fractionalomputer virus propagation model. This
method is a powerful yet straightforward approach to tackling epidemic models and has been
successfully applied in biology, engineering, and applied mathematics. It combines the Laplace
transform and the Adomian decomposition method, offering several advantages for solving
complex problems. One of the advantages of this method is its accuracy, as by employing the
Laplace transform, it transforms the differential equations into algebraic equations, which are
often easier to solve. This transformation reduces the complexity of the problem and enables
the use of powerful algebraic techniques to obtain accurate solutions. Additionally, the
Adomian decomposition method provides a systematic and robust approach to handling
nonlinear terms, allowing for accurate approximation of the solution even in the presence of
nonlinearity. This method does not require any perturbation or linearization, nor does it need a
defined size of the step like the Rung-Kutta of order 4 technique. Various models have already
been solved using this particular technique, such as HIV infection of CD4+ T cells model [13],
fractional-order smoking model [14], epidemic childhood diseases [15], Radhakrishnan—
Kundu-Lakshmanan equation [16], Asian option pricing model [17], Burger’s equation [18],
Chen-Lee-Liu equation [19], prey-predator model [20], nonlinear fractional smoking
mathematical model [21], COVID-19 model [22], HIV model [23], Smoking epidemic model
[24], fractional-order co-infection SEIR model [24].

2.Model formulation

In this article, we propose a computer virus propagation model that incorporates varying
antidote rates for invulnerable nodes, taking into account both immunization methods and
operating system vulnerabilities [1].

S'(t) = B—AS(t)A(t) + wI(t) — eR(t) — uS(t),

A'(t) = AS(DOA() — 5A() — yA(t) — pAD),
I'(t) = yA(©)—oc I(t) — pul (t) — wI(2),

R'(t) = SA(t)+x I(t) — uR(t) + eR(2). @.1)

The model considers a computer network in which each node exists in one of four possible
states: susceptible (), latent (A4), infectious (1), or recovered (R). Susceptible nodes are
healthy but vulnerable to infection. Latent nodes are infected, though the virus remains
inactive. Infectious nodes carry active viruses, capable of spreading the infection. Recovered
nodes have acquired immunity. The total number of nodes at time t is given by N(t) =

S() +A() +1(t) + R(D).

B is the constant recruitment of the susceptible nodes;u is the same rate at which every node
in the states S(t), A(t),I(t), and R(t) disconnects from the network; ¢ is the constantrate at
which every susceptible node acquires temporaryimmunity due to antidote and Khanh and
Huy [1] assume that € < p taking system vulnerability into account; a, 4 , §,and w are the
other state transition rates of system (2.1).

By applying the fractional derivative operator {DZ of order &, 0 < @ < 1 in the system (2.1),
we have
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¢DES(t) = B — AS(HA(t) + wI(t) — eR(t) — uS(t),

6DEA() = AS()A(t) — SA(t) — YA(t) — uA(t),
6DEI(t) = yA(O)—oc I(t) — pul(t) — wI(t),

EDER(t) = 6A(t)+oc I(t) — uR(t) + €R(t). (2.2)

With the initial condition
3.Basic Definitions

In this section, we will introduce some basic definitions and properties of the theory of
fractional calculus that will be later.

Definition 3.1 A real function f(x), x > 0 is said to be in the space C,, ueR if there exists a
real number P > u such that f(x) = xP f; (x) where f;(x)eC[0, ). Clearly C, < Cp if u <

B.
Definition 3.2 A function f(x), x > 0 is said to be in the spaceC[*, meNU{0} if f™ € Cy-

Definition 3.3 [25] The Riemann-Liouville fractional integral operator of the order ¢ > 0 of a
function, f € C,,, u = —1 is defined as

UENE) = rz Jo =D (@dux >a 3.1
ef)(x) = f(x). (3.2)

All the properties of the operator /¢ can be found in [19] which we mention only the
following, for f € C,, u = —1,a, = 0,rand y > —1 we have

GEHE) = USP 0, (3.3)
JYEH = JE1eH () (3.4)
a _ I'(y+1) a+

ax? = r'(a+y+1) i (3.5)

The basic definition of the Riemann—Louville fractional derivative possesses some advantages
over other definitions when used to simulate real-world phenomena in the form of a
fractional-type differential equation.

Definition 3.4 [26] The fractional derivative of the function f(x) in Caputo’s sense is defined
as
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(Dgf) (x) = (]m; aDmf) (x) = — f;(x —t)me M dt, form—1<a<

r(m—a)
mymeN,x > 0. (3.6)

Lemma3.1If-1<a<m,me€Nandu = —1, then
UEDEN@ = F00) - TR fH@) (552, 2 0 (3.7)
(DN = () (38)

4.Laplace Adomian Decomposition Method

This section will illustrate the basic steps for the Laplace Adomian decomposition method
(LADM). We first need the following definitions.
Definition 4.1 [27] A function f on 0 < t < o is exponentially bounded of order o € R if

satisfies || f(t) II< Me’t, for some real constant M > 0.

Definition 3.2 The Caputo fractional derivative is defined as follows:

L{D?f()} = s’L{f ()} - Z sok71f10(0),
k=0 (421)

where m = ¢ + 1, and [«] represents the integer part of 0. As a result, the following useful

formula is obtained:

r(oc+1)
slo+1)

L(t°) = o € R*. (4.b)

The last-mentioned definitions can be used in this section to discuss the general procedures for
solving the proposed mathematical model (2.2). First of all, the Laplace transform is applied

to both lift-hand and right-hand sides of Eq. (2.2) in the following form:

L(§DZS(6)) = L( B — AS(DA(t) + wl(t) — eR(t) — uS(D)),
L(§DZFA(D)) = L = (AS(DA(t) — 8A(t) — yA(t) — pA(D)),

L(§DEI(t)) = L(yA(®)—oc I(t) — I (£) — wI(D)),

L(SDER()) = L(SA(t)+o I(£) — uR(t) + eR(L)). 4.1)

Then, by applying the formula (4.a) to Eq. (4.1), we get
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SEL(S) — s¥715(0) = g — AL(SA) + w L(I) — eL(R) — uL(S),

S*L(A) — s*1A(0) = AL(SA) — 6L(A) —yL(A) — uL(4),
sEL(D) — s 1(0) = yL(A)— o< L(I) — uL(I) — wL(D),

s*L(R) — s* 1R(0) = §L(A)+« L(I) — uL(R) + €L(R). 4.2)

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get

L(S) =%+ —S%L(SA) +Sﬁa L(D) —S%L(R) _ S%L(S),

Sa:+1
k, A 5
L(A) = 2+ L(54) — —L(4) - SlaL(A) _ S%L(A),
ks oy x U w
LI = 2+ L) — o LD = 2o L) — LD,

LR =2+ 2 L(A) += L) - £ LR) + S L(R). (4.3)

The proposed method gives the solution as an infinite series. Let the value of C = SA to be
able to apply the Adomian decomposition method. We consider the solution as an infinite series

in the form

S() = XnmoSa (D), A(t) = Xnzo An(t), 1(t) = Xnzo o (), R(t) = Xy Rn(0).
(4.4)

Then, by decomposing the nonlinear part named C in the following form

C=Xn=0Cn (4-5)
Here, C,, can be computed using the convolution operation as

1

C lS
n F(n + 1) den
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(4.6)
By substituting Eq. (4.4- 4.6) into Eq. (4.3) we have resulted in the form.

= k,k, B 1 (v =
L (Z Sn(t)> =252 <Z cn> to LD -1 (Z Rn(t))

n=0 n=0

n=0

-1 (ZAn(t))
LD =2+ —L <Z An(t)> .y <z I (t)) _ %L (Z I (t)) _ S%L (; In(t)),

L (i An(t)) = % + SiaL (i Cn> — S%L (i An(t)> — SlaL (i An(t)>
n=0 n=0 n=0

n=0
L(R) = % + ;%L (Z A (t)) ia (Z I (t)) - %L (Z Rn(t)> + SiaL (Z Rn(t)).
n=0 n=0 n=0 n=0
4.7)

Then, matching the two sides of Eq. (4.7) yields the following iterative algorithm

B /1
L(Sy) = L(Co) t L(Io) - _L(Ro) - _L(So)
A )
L(AD) = 25 L(Co) = —L(A0) = L(Ap) = T L(Ay),
L0y = L 10g) - = LUy — 22100 - 10y,
1) x u €
L(Ry) = 7 L(Ao) + 7 Lo) = 7 L(Ro) + 7 L(Ro), ...
L) = ~ 2 LCam) + o L) ~ g L(Rus) — 2 L(5100)

A 9 Y [z
L(An) = S_aL(Cn—l) - S_aL(An—l) - S_aL(An—l) - S_aL(An—l)'
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y o< u w
L(In) = S_aL(An—1) - S_“ L(In—l) - S_aL(In—l) - S—aL(In—O,

L(R) = S L(An-1) + = LUn-v) = L L(Ryr) + S L(Ryos). (4.8)

Finally, by taking the inverse transform of Eq. (4.8), we have the following equation

SO = kl' AO = k2, IO = k3, RO = k4_,

a
S; = [B = AC + wly — pSo] ﬁ,
(24
Ay =[AC, — 6A¢ — yAg—HA] m,
a
I = [yAg—x Ip — ply — wlo]m,
[24
R1 = [5A0+0C IO - ,uRO + SRO] m, vy
ta
Sn = [-ACh1 + w1 — uSp_1] m;
ta
A, = [ACn—l —6Ap_ 1 — VAn—l_.uAn—l] m;
ta
In = [yAn—l_oc In—l - .uln—l - wln—l] m;
a
Ry =[64p 1+ Iy 1 — uRy 1 + 51n—1]m, e

(4.9)

Similarly, at the final step, we get the rest of the terms as infinite series as,

(00] ta
S(t) = z Sa(8) = ks + [ACo = 640 = YA—ptAol s +
n=0
= a
A(®) = 2 An(t) = Fy +[ACo = 640 — yAg—HA] s +
n=0
2 a
I(t) = Z)In(t) = ka + [yAg=ec o = ulo — lo] oo +
n=
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ta

R(t) = Eizo Ru(t) = ky + [8Ag+oc Iy — uRy + €Rol rrmrs + -+

(4.10)

Equation (4.10) solves the main SAIR model of Eq. (2.1) which will be illustrated in the next
section.

5.Numerical Simulations

In this section, we test the effectiveness of the proposed technique by examining the acquired
results for model (2.1) for different . The numerical simulations are presented by taking
partial parameters from numerical simulations in [1]. In this section, the values of various
parameters are presented for two different cases.

The results obtained by LADM match the exact solutions when @ = 1. Figure 1-13 presents
a comparison between the results obtained using LADM and those generated by MATLAB's
ODE45 (a Runge-Kutta 4th order method) across various model categories.It is evident from
this figure that the proposed technique is efcient and accurate, as it perfectly agrees with the
MATLAB code results.

Case 1: Consider B =5, x=0.1,§ = 0.35,e = 0.1,y =0.45,A=0.7,u=0.35and w =
0.1. With the initial condition (5(0), L(0),1(0),R(0)) = (0.5,3.5,5,5.5).

Time Evolution of S(t), A(t), I(t), and R(t)

6/ /

— 5(b)
1t — Alt)
— (t)
— R(t)

20 30 40 50
Time (t)

(=]
=
o

Fig. 1 The solution of S(t), A(t),I(t) and R(t) obtained by Rung-Kutta of order 4 technique
(ODE45)fora =1,and 0 < t < 50.
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I\
I N\
I
151 b
I
I
) I
o |
I
|
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Fig. 2 The solution of S(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t <50.
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Fig. 3 The solution of A(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t <50.
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— — —a=1
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341 \ 1

3.2+ X — b
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Fig. 4 The solution of I(t) obtained by LADM for different values of @, (a) of « = 1, (b) of
a=09,(c)ofa=08.and 0 <t <50.

7 T T T T T T T
-
/
I
/ -
r,S
65- | , _-——"7" ]
[ //
|/ /
S Iy
o Iy
Iy
Iy
6rlly i
Iy N
1 — — —o=1
Il — — —a=09
I — — —a=0.8
I
r
55 1 | 1 1 1 1 | 1 1

0 5 10 15 20 25 30 35 40 45 50

Fig. 5 The solution of R(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t <50.
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Case 2: Consider B = 3, x= 0.05,6 = 0.25,¢ = 0.02,y = 0.001,4 = 0.25, 1 = 0.35 and
@ = 0.01. With the initial condition (5(0), L(0),1(0),R(0)) = (1.5,0.01,0.02,0.001).

Time Evolution of S(t)

— sft)

Variable value

T T T T T T
4] 10 20 30 40 50
Time (t)

Fig. 6 The solution of S(t) obtained by ODE 45 fora = 1,and 0 < t < 50.

0 5 10 15 20 25 30 35 40 45 50

Fig. 7 The solution of S(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t <50.
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Time Evolution of A(t)

— Alt)

Variable Value
%]
)

30 40 50
Time (t)

Fig. 8 The solution of A(t) obtained by ODE 45 fora = 1,and 0 < t < 50.

45 Iy A

251
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— — —a=0.9
/ — — —a=0.8| -

0.5 |

0 5 10 15 20 25 30 35 40 45 50

Fig. 9 The solution of A(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t <50.
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Time Evolution of I(t)

0.0200 — I

0.0175

0.0150 4

0.0125 4

Variable Value

0.0100 +

0.0075 +

0.0050 ~

0.0025 ~

Time (t)

Fig. 10 The solution of I(t) obtained by ODE 45 fora = 1,and 0 < t < 50.
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Fig. 11 The solution of I(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t <50.
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Time Evolution of R(t)
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Fig. 12 The solution of R(t) obtained by ODE 45 fora = 1,and 0 < t < 50.
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Fig. 13 The solution of R(t) obtained by LADM for different values of a, (a) of « = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t <50.
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6.Conclusions

In this paper, an improved fractional model for propagation of computer virus in the network,
that containing the latent, antidotal computers and susceptible computers with low cure rate, is
introduced and studied. the model has been successfully solved using two different approaches:
the Rung-Kutta of order 4 and Laplace Adomian decomposition method.The acquired results
ensure accurate solutions and are investigated for different values of the fractional-order a and
transmission rates.All obtained results have been analyzed and compared for various cases. Our
results and methods in this work can be further extended or generalized in solving other
interesting nonlinear models arising from some phenomena in physics and engineering. In
addition, our results can also be applied for models formulated using other fractional
derivatives.
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Abstract

In this paper we examine the (3 4+ 1)—dimensional Gross-Pitaevskii equation, which describes phenomena such as wave
propagation. The solitonic wave solutions of the underlying problem are examined using two efficient techniques: the modified
auxiliary equation method and the exp(—w(&)) method. This approach yields solutions that are stated as exponential, rational,
trigonometric, and hyperbolic functions. To have a better understanding of their dynamic behavior, several of the distinct types of
solitons, including dark waves, have also been shown using 3D visuals for varying parameter values. The stability of the obtained
results is confirmed by investigating the modulation instability for the governing model.

Keywords: The modified auxiliary equation method; exp(—w(§)) method; Gross-Pitaevskii equation.

1 Introduction

Numerous disciplines, such as ocean engineering, solitary wave theory, hydrodynamics, optical fibers, chaos theory, and turbulent
theory, utilize nonlinear evolution equations (NLEEs). Many nonlinear mathematical and physical processes depend on the search
for accessible properties and the building of accurate solutions for nonlinear dynamical models. Since the end of the 1970s,
numerous approaches have been put forth in this context to methodically find answers for such models. The reference list [1]-
[22] contains some of these techniques. One classical example of a nonlinear evolution equation is the Gross—Pitaevskii equation.
It is an alternative form of the well-known nonlinear Schrodinger equation (NLSE), a general model controlling complex field
envelope evolution in nonlinear dispersive media. Generally speaking, the Gross—Pitaevskii equation , which is essentially a
mean-field approximation for the interparticle interactions, describes the dynamics of the condensate at zero temperature. Formal
analytical results of the Gross—Pitaevskii equation are given in [23]. In [24] Bao, Jaksch and Markowich investigate the numerical
solution of the time-dependent Gross—Pitaevskii equation at very low or zero temperature, which describes a Bose—Einstein
condensate (BEC). In [25] with the help of numerical approaches, the Bose-Einstein condensate of trapped interacting neutral
atoms at zero temperature is described by the time-independent nonlinear Gross-Pitaevskii equation in two dimensions. The
(3+1)-dimensional periodic potential has certain modernistic soliton solutions, which are investigated by researchers in [26]. To
obtain a range of novel solutions for the governing model, three methods are used: the extended G /G’-expansion approach, the
Sardar sub-equation method, and the function method. In this work, we focus Manjun’s (3 + 1)—dimensional Gross—Pitaevskii
equation in [27] given as

z'%h(s, t) = —Vh(s,t) + U(x)h(s,t) + g(s,t)|h|?h, 0
02 9?2 52
V= top o

where s € R2;¢ > 0. V stands for the Laplacian operator. The function U (z) describes the potential of the trap to confine the
condensate and s = (x, y, z) is the propagation variable and ¢ is the transverse variable. The nonlinear coefficient g(s, t) is the
real-valued functions of time and spatial coordinates. We apply the exp(—w/(zi))-expansion approach and modified auxiliary
equation method to obtain soliton solutions. By displaying the 2D, 3D, and contour plots, more thorough information regarding
the dynamical representation of some of the solutions is shown.

This paper is organized as follows: we give the presentation of methodologies in Section 2. In the next section, the math-
ematical analysis and an application of the mentioned methods are given. In section 4, we discuss the modulation instability
analysis. In Section 5, we give some conclusions and discussions about the obtained solutions. Finally, the study is concluded
with the Conclusion section.

2 Presentation of methodologies

In this part, the exp(—w(€)) method and the modified auxiliary equation method have been explained in detail.
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2.1 The exp(—w(§))-expansion method
Consider the following nonlinear evolution equation [28, 29]
Q(uautvumvuttvuttw") = 07 (2)

where () is a polynomial in u(x,t) and its derivatives in which higher order derivatives and nonlinear terms are involved. In

virtue of the traveling wave transformation
u=u(§), £ =z — ct, 3)

where c is a constant to be determined later, Eq. (2) can be reduced to an ordinary differential equation (ODE)
Pu,u',u”,...) =0, 4)
where prime denotes the derivative with respect to €. The, the traveling wave solutions of Eq. (4) can be expressed as follows
w = ag + ag exp(—w(€)) + ... + an(exp(~w(€)))" 5)
where n is determined by balancing the highest order nonlinear terms with the highest order derivatives of w(£) in Eq. (4) and
w = w(§) satisfies the following ODE

w'(§) = exp(—w(§)) + aexp(w(§)) + . (6)

Eq. (6) has the following analytical solutions:
Casel: a # 0,02 — 4a > 0,

—b—/b? — 4atanh (@g)

wy1(§) =1n o @)
Case2: a # 0,b%> —4a < 0,
b+ \/mtan(i‘/*b;“‘“f)
w2(§) =In o ®)
Case3: a#0, b2 —4a =0,
2b 4
wsl) = (- 255 ©)
Cased: b #£0,a =0,
b
wy(§) = —In (exp(bg)l) . (10)
CaseS5: a=0,0=0.
ws (§) = In(). (11)

Here, for simplicity, in w;(£),1 < i < 5, have been replaced all of £ + &y with &, since Eq. (6) is an autonomous ODE.
Next, substituting Eq. (5) along with Eq. (6) into Eq. (4) yields a polynomial in exp(—w(§)). Setting each coefficient of this
polynomial to zero, a set of algebraic equations in terms of ag, ay, ..., a,, ¢, b, a is obtained. Lastly solving the system of algebraic
equations and later substituting these results and analytical solutions w1 (), ..., ws(§) into Eq. (5) give traveling wave solutions

of Eq. (4).

2.2 The modified auxiliary equation method
To summarize the basic steps of this method let us consider the following PDE
Q(uautvua?autbuttv“') = Oa (12)

where () is a polynomial in dependent function and its partial derivatives. With the help of the traveling wave transformation
u=u(), & = x — ct, where c is arbitrary constants, Eq. (12) can be transformed to an following ODE

P(u,u’,u”,...)=0. (13)

Here (.) = d%( .). To obtain the solution of Eq. (13) via the modified auxiliary equation method, the general solution has the
form

u=ag+» a K74 b KO, (14)

i=1 i=1
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where a;,b; (0 < ¢ <n) and K are constants to be determined and f (&) satisfy the following auxiliary equation

(6 = b+ aK—FE L cKf©
B In(K) ’

(15)

where a, b and ¢ are parameters to be determined and K > 0, K # 1. The integer n can be determined by balancing procedure.
Putting Eq. (14) with Eq. (15) into Eq. (13) and collecting coefficients of K*/() (i = —n,...,n) by equating them to zero,
a system of algebraic equations is obtained. Then, solving this system, the values of constants a;, b;, a, b, c are obtained. By
putting all the values of constants into Eq. (14), the required solutions of considered equation have been obtained. Substituting
these values and the solutions of Eq. (14) into Eq. (13), the exact solutions of Eq. (12) can be derived. The solution of Eq. (15)
subject to the couple of cases is given as:

If b2 — 4ac < 0 and ¢ # 0, then

KF© —b+ Vdac — b2 tan(3v4ac — b%¢)

= % . (16)
—b+ Vdac — b2 cot (% v/4ac — b%¢)
or 5 :
If b — 4ac > 0 and ¢ # 0, then
FH© _ —b + V4ac — b? tanh (1 v/4ac — b2¢) (17
2¢ ’
—b+ Vdac — b2 coth(3V4ac — b2¢€)
or 5 :
If b2 — 4ac = 0 and ¢ # 0, then
K _2+5 (18)

3 Mathematical analysis

In this section, the exact solutions of Eq. (1) are established by means of exp(—w(&))-expansion method and the modified
auxiliary equation method.
To seek exact analytical wave solutions of Eq. (1) we take the similarity transformation [30] by Malfliet,

h(x,y, z,t) = W(E)eMOTHWIA ¢ =y ty 42 —ct. (19)
Applying Eq.(19) into Eq. (1), we have the real and imaginary parts given as follows:
The real part:
30 — Uk a? + 42+ N2 + kB + U] — g3 = 0. (20)
The imaginary part:
U[2k(a+~v+ X)) —¢]=0. 1)

From Eq. (21), we obtain the velocity of solitons, given as:

¢ =U2k(a+~+ M) (22)
By utilizing the homogenous balance approach in Eq. (20), we achieve n = 1. Now we will find the soliton solutions to the
above Eq. (20) by using the described approaches.

3.1 Implementation of exp(—w())-expansion method

For n = 1, Eq. (5) reduces into
V(&) = ap + a1 exp(w(§)), (23)

where a; # 0, ag is a constant. Firstly, we substitute the expressions of ¥ in Eq. (23) into Eq. (20) and collect all terms with the
same order of together. Then by equating the coefficient of each polynomial to zero and by solving the gained system with the
use of the Maple tool, we achieve the below solution set:

Set2:< ap

NVEY) 1 2022 27.2 242 2
+ 2v°k® + 2k N 4+ 3b° + 2U — 12
=2ﬁ’al=“@ﬁﬁ:— e Sk @
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The respective solutions are as following:
Case 1: Ifb? —4a >0

Vé\/gb 2\[\/> - <o¢w— (2a2k2+272k2+2k22:2+3b2+2[]712a)t+'yy+bz>
\I/ =
1 m tanh(\/bé da (—2k( o¢+’y+)\)f+r+y+z)) ) e

. (25)

Case2: Ifb? —4a < 0

\/6 \/gb 2\/6\/ga - (az— (2(12k,2+2’*{2k2+2ky22]:\2+3b2+2[]712a>t+ryy+bz>
— €
5 V—=b2+4a (—2k(a+y+N)t+z+y+2)
—vV=0?+4a tan( 5 )

U, . (26)

Case3: Ifa=102/4

(2k2a2+2k272+2k2/\2+3b2+2U712a)t

Ik | vz — +’yy+bz>
2/6 \/gbe ( **

Uy = 27
8 20 (=2k(a+v+Nt+ax+y+2)+4 @7)
Cased: Ifa =0
v \/Ibeb(72k(a+’y+k)t+m+y+z) Ve \Fb - <am— (2a k2 2+2 k2+2k22$2+5b2+2U 12a) +’yy+bz>
g 5 + > g e
Va = eb(—2k(a+y+N)t+a+y+z) _ | (28)
Case5: Ifa=0,b=0
( (2k2a2+2k2w2+2k2)\2+2U)t+ )
ar— 5% Y
Ve 6/%e
Uy 29
2k (a+y+Nt+a+y+z 29)
3.2 Implementation of modified auxiliary equation method
Considering the homogeneous balance n = 1, we suppose that the solution of Eq. (20) can be expressed by
U =aqag+a KO + b K (30)

where ag, a1, b; are constants to be determined later. Putting Eq. (30) with Eq. (15) into Eq. (20), and by collecting all
coefficients of K*f ((5)) (¢ = 0,1), and setting them equal to zero, yields an algebraic system. At this stage, Maple can be used
to solve this equation system. Therefore, the following set of values of constants are obtained. Substituing this set into Eq. (30)
with the help of Eq. (19) the exact solutions of Eq. (1) are obtained.

Vﬁﬁ =0 = [T SOV G T 7

Set3: 31
A 202 + 292 + 2\ (D
Ve \/Ib —4U 2 2 2 2 2
9 +24ac—60%) (2 + X +a?)+ 0
Set 4 : =0,bp = 32
) ©o 0= 0,81 =V \[ 202 + 272 + 2)2 (32)
According to Set 3 in (31), the solitary wave solutions of Eq. (1) can be obtained as
If b2 — 4ac < 0 then
b\f (*b + \/ém tan( (Z+y+2*€2t)\/4acfb2)> \/6 %
\116('777 Y, z, t) = 5 elk(am+Bt+yy+Az) (33)
2g\/7
or
/G (fb + Ve — B2 cot (Lrtrtmsyin= ) ) 5 [1
Vo (2,y,2,t) = — g elk(afb+ﬁt+’yy+>\z)7 (34)

29\/7 2
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where ¢ = 2k(a + v+ A).
If b2 — 4ac > 0 then

bv/6 (_b+ V—dac +b? tanh((z+y+zfct2)\/m)) /e

2g\/> 2

1
Us(2,y, 2,1) = 9| Ik(aw+Bttyy+rz)

or

/6 (—b +V/—4dac + b2 coth((mwﬂﬂg\/m)) V6

1
Uy(z,y,2,t) = — 9| tk(aztBityy+rz)

Zg\/> 2

where ¢ = 2k(a + v+ A).
If b — 4ac =0

\/éelk(ax+5t+’yy+k2)

2l -5-4-3)
where ¢ = 2k(a + v+ A).

According to Set 4 in (32), the solitary wave solutions of Eq. (1) can be obtained as

If 2 — 4ac < 0 then
V6 \/Ib 2ca\/6 \/I
9 4 9 eIk(am—&-Bt—i—'yy—&-)\z)

z+y+z—ct)vV4ac—b2
—b+ Vdac — b? tan(( E— )

Uio(z,y,2,t)

Uy (z,y,2,t) =

or

V6 \/gb 2cav/6 \/% Lk(az-+Bt+yy+Az)
v v Yy 7t = - + V4 . o ’
1221 b Ve — 12 cot (b= i) |

where ¢ = 2k(a + v+ A).
If b — 4ac > 0 then

YGNEY. 2006 | /1 i
\Iflg(I,y,Z,t) = - + b elk(aw Yy+Az
2 (z+y+z—st)V—dactb?
—b+ v —4ac+ b2 tanh(’” gLz ~y oo )
or
V6 \/gb 2ca\/6 \[
Uiz, y,2,t) = — 5 elh(au+Bt+ry+2z)

o V—dac+ 02 coth( (atytz=st)/=ductV: )

where ¢ = 2k(a + v+ A).
If b — 4ac = 0 then
8e1’“<°‘”5t+wﬂz>\/€§\/§ (4+2+4+)0°+5+($-%-4-%)ac)

v l)=—
15(2,Y, 2, 1) —4+ (26t — 22 —2y —22)b ,

where ¢ = 2k(a + v+ A).

4 Graphical Illustration

In this section, graphical representation will be given for some of the solutions obtained.
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(a)

Figure 1: Dark soliton solution 3D-profile and contour plot of |[¥;|? for b = 2,a = 0.1,a = —0.1,7 = 0.5\ = —0.1,3 =
5,g=24,k=—-04,y=1,z=1within =5 <t <5, =5 <z <5.

0.05

(b)

(a)
Figure 2: Dark soliton solution 3D-profile and contour plot of |¥7|? fora = —2,b = 0.5,c = 1,9 =35,k = —0.1,y = 1,2 =

1,a=05=03,7y=05X=-25y=1,2=1within -5 <t <5, =5 <x <5.
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Figure 3: Density plots of the solution |¥1|? (a) and |¥7|? (b).
In Figure 1 (a) the 3D surface plot shows a characteristic dip, which is a typical of a dark soliton. In (b) the contour plot
displays the same solution from a top-down perspective, with color coding indicating intensity levels.
In Figure 2 the 3D plot shows a deeper and wider soliton structure, reflecting the parameter changes.

In Figure 3 (a) and (b) provide clearer visualization of the spatial and temporal evolution of the soliton profiles, with intensity
gradients distinctly highlighting propagation characteristics.

S Modulation instability analysis

In this part of the study, modulation instability analysis (MI) for the stationary solutions of Eq. (1) is studied by supposing that
Eq. (1) have the following stationary solution

W,y 2 1) = (VP +o(w,y,21) 7, 3)

where the optical power P is normalized and 7) is a constant. We investigate the evolution of the perturbation ¢(z,y, z,t) using
the concept of linear stability analysis. Substituting Eq. (43) into Eq. (1) and linearizing, we obtain

do Ao  dP¢ ¢ * _
i Tam e g o Ue Puot —Py(d7 +20) =0 (44)

where ¢* is the conjugate function. Supposing solutions of Eq. (44) are in the following form:
¢($,y7 Z,t) = ei(k1z+k2y+k3z7wt) + ag efi(klerkgerkngwt), (45)

where w is the frequency of perturbation and k1, ko, k3 are normalized wave numbers. Putting Eq. (45) into Eq. (44) gives a set
of two homogenous equations as follows

(—Pn—2Pg—k12—k22—k32—U—w)a2—ga1P=O,
(46)
(=Pn—2Pg—ki* —ks® —ks® —U +w) a1 — g P = 0.

From Eq. (46), one can easily obtain the following coefficient matrix of oy and s

—Pyg —Pn—2Pg—k* —ko® — k3’ —U —w ar_ (0 47)
—Pn—2Pg—k1® —ky? — ks’ —U +w —Pyg a )\ 0 )"

The coefficient matrix in Eq. (47) has a nontrivial solution if the determinant equal to zero. By expanding the determinant, we
obtain the following

(=% = dng = 3¢%) P24 (kn® + ko” + ke® +U) (9+ 3 ) P=(k® +ke” + ks® + U =) (ks + ko® + ko + U +w) = 0.
(48)

Eq. (48) has the following solutions for w :
w= :I:\/(Pn +3Pg+ki* + ko® + ks® +U) (Pn+ Pg+ki” + ko> + k3* + U). (49)

7
9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye




It is clear that the steady state is stable if (Pn + 3Pg + k1” + ko + ks® + U) (Pn+ Pg+ k1> + k2* + ks® + U) > 0. Fur-
thermore, the steady state becomes unstable if (Pn + 3Pg + k12 + k22 + k32 + U) (Pn + Pg + k12 + k22 + k32 + U) < 0.
The MI gain spectrum is finally determined as:

G(ky) = 2Im(w) = j:Q\/(Pn +3Pg+ki® + ko® + k3® + U) (Pn+ Pg+ki* + ko + k3® + U). (50)

From Fig. 4, it can be easily observed that, the modulation stability gain spectrum increases with the increase of the incidence
power P.

&1 / —354 A
----- P=02U=0.1g=15 P=050U=02g=25 / s P=02,U=01g=15 P=05U=02g=25
s—D=07U=03,5=35 P=08 U=04,g=45 —— P=0.7,U=03,g=35 P=08,U=04 g=45
—-P=1,U=05g=55 —-P=1,U=05¢g=55

Figure 4: The modulation instability graphs for ko = .1, k3 = .3,7 = 1.3 in Eq. (49)

6 Conclusion

In this work we considered (3 + 1)-dimensional Gross-Pitaevskii equation (1). We first discussed the exact travelling wave
solutions with the exp function method and modified auxiliary equation approach. We have systematically get dark wave type
solution forms for (3 4+ 1)— dimensional Gross-Pitaevskii equation Eq.(1). Fig. 1 displays the stability analysis solutions. The
MI analysis is used to examine the stability analysis of the obtained solutions and the movement role of the waves. In order to
examine how the model looks physically, we have set up 3D, contour and density graphs for various value sets. We think the
research’s findings are innovative and will help to improve the dynamic behavior of NLEEs that are seen in nonlinear sciences.
The goal is to look into greater interaction in the future.
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Abstract

This study investigates a nonlinear SITR system that models the dynamics of COVID-19
by incorporating fractional-order derivatives in the sense of the Caputo definition. The model
categorizes the population into four compartments: susceptible (S), infected (I), under treatment
(T), and recovered (R). To analyze the fractional-order SITR system, the Laplace Adomian
Decomposition Method (LADM) is employed. Approximate analytical solutions are obtained,
demonstrating rapid convergence and effectively capturing the system’s behavior. The accuracy
and applicability of the method are assessed, confirming the validity of the proposed fractional-
order model.

Keywords: Caputo fractional derivative; Laplace Adomian decomposition; Covid-19;

Nonlinear system.

1.INTRODUCTION

The COVID-19 pandemic, which emerged in late 2019, rapidly evolved into a global health
crisis, highlighting the critical role of mathematical modeling in understanding and
controlling infectious diseases. Epidemic models have been widely used to analyze
transmission dynamics, forecast disease spread, and assess the effectiveness of intervention
strategies [ 1-3]. Common models for COVID-19 build upon classical frameworks such as the
Susceptible-Infected-Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR)
models. However, due to the unique characteristics of COVID-19, including asymptomatic
cases, varying infectious periods, and treatment processes, these models have been extended
to include additional compartments such as treatment classes, quarantine, and age or
comorbidity-based risk factors [4—7].

Recently, fractional-order models and stochastic approaches have gained popularity, offering
greater flexibility to capture memory effects, heterogeneity, and randomness in transmission
dynamics [8—11]. Moreover, network-based models have been developed to simulate complex
social contact structures and better predict the spread under different intervention scenarios
[12,13]. Agent-based and data-driven models have also been used to incorporate detailed
individual behavior and mobility patterns, improving prediction accuracy and aiding in
targeted intervention strategies [14,15].

These mathematical models not only help monitor the current state of the pandemic but also
provide critical insights for healthcare capacity planning and public health decision-making.
This is especially important for evaluating the impact of emerging variants and vaccination
campaigns on the course of the epidemic [3]. n this research, we are also exploring the potential
of using the Laplace Adomian decomposition method (LADM) to solve the fractionalomputer
virus propagation model. This method is a powerful yet straightforward approach to tackling

epidemic models and hasgr-heemdstceessitynapphiedrpuliRlegceREiness i, cagdeaPRl Btbnces
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mathematics. It combines the Laplace transform and the Adomian decomposition method,
offering several advantages for solving complex problems. One of the advantages of this
method is its accuracy, as by employing the Laplace transform, it transforms the differential
equations into algebraic equations, which are often easier to solve. This transformation reduces
the complexity of the problem and enables the use of powerful algebraic techniques to obtain
accurate solutions. Additionally, the Adomian decomposition method provides a systematic and
robust approach to handling nonlinear terms, allowing for accurate approximation of the
solution even in the presence of nonlinearity. This method does not require any perturbation or
linearization, nor does it need a defined size of the step like the Rung-Kutta of order 4 technique.
Various models have already been solved using this particular technique, such as HIV infection
of CD4+ T cells model [16], fractional-order smoking model [17], epidemic childhood diseases
[18], Radhakrishnan—Kundu—Lakshmanan equation [19], Asian option pricing model [20],
Burger’s equation [21], Chen-Lee-Liu equation [22], prey-predator model [23], nonlinear
fractional smoking mathematical model [24], HIV model [25], Smoking epidemic model [26],
fractional-order co-infection SEIR model [27].

2.Model formulation

Mathematical models are crucial for understanding and predicting the spread of infectious
diseases. These models typically use differential equations to describe how infections evolve
over time. They consider population groups such as susceptible, asymptomatic, infected, and
recovered individuals, along with disease characteristics and intervention strategies.
Parameters quantify transmission and recovery rates, while equations capture the dynamics of
these groups. Through mathematical analysis and computer simulations, such models reveal
the core mechanisms driving epidemics and support public health officials in designing
effective control measures.

The proposed fractional SITR model can be expressed as follows:

The SITR model for COVID-19 dynamics categorizes the population into four classes:
susceptible (), infected (1), treatment (T), and recovered (R). The susceptible class is
further divided into two subgroups: S; (t), representing individuals not affected by COVID-
19, and S, (t), representing individuals not infected but with pre-existing conditions or
advanced age. The infected class I(t) includes those currently infected with COVID-19. The
treatment class T(t) represents individuals undergoing medical care, and the recovered class
R(t) includes those who have recovered from the disease. The mathematical model
describing the dynamics of these classes is presented as follows [10]:

S, (t) = B—=BI)S;(t) — 6B T(t)— o S;(2),

S,'(t) = B = BI(t)S,(t) =SB T(t) — a S,(t),
I'(t) = —ul(t) + ﬂ](t)(Sl(t) + Sz(t))— o I(t) + BST(t) + al(t),

T'(t) = ul () — pT ()= T(t) + YT (t) + €T (1),

R'(t) = —x R(t) + pT (). @.1)
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Table 1. State variables for the dynamics of the SITR model.

Variable Description
S, (t) Non-infected individuals
S,(t) Non-infected older or major

diseased people

1(t) Rate of infected from COVID-19
R(t) Recovery rate from COVID-19
T(t) Treatment

Table 2. Descriptions of the state variables based on the nonlinear SITR model.

Parameter Description Assigned Value
B Contact rate 0.1

B Rate of natural birth 0.3

6 Reduce infection from treatment 0.3

o Fever, tiredness and dry cough rate 0.005
1} Recovery rate 0.1

€4 Death rate 0.25
p Rate of infection from treatment 0.3

P Healthy food rate 0.2

£ Sleep rate 0.1
Aj,j=1,..,5 Initial conditions (0.65,0.15,0.75,0.35,0.1)
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By applying the fractional derivative operator {DF of order &, 0 < @ < 1 in the system (2.1),
we have

oD{S1(t) = B — BI(t)S1(t) — 6B T(t)— x S1(¢),

oDES2(t) = B — BI()S,(t) — 6B T(t) — a S,(b),
SDEI() = —pl () + BI)(S1(D) + S,(1))— o< I(t) + BST (L) + ol (0),

oDET(t) = pul(t) — pT(t)—o T(t) + YT(t) + T (¢),

SDER(E) = — R(t) + pT (). (2.2)

Intial condition

§1(0) = Ay, 5,(0) = A5, 1(0) = A3, T(0) = A4, R(0) = As. (2.3)

3.Basic Definitions

In this section, we will introduce some basic definitions and properties of the theory of
fractional calculus that will be later.

Definition 3.1 A real function f(x), x > 0 is said to be in the space C,, ueR if there exists a
real number P > u such that f(x) = xP f; (x) where f;(x)eC[0, ). Clearly C, < Cp if u <

B.
Definition 3.2 A function f(x), x > 0 is said to be in the spaceC[*, meNU{0} if f™ € Cy-

Definition 3.3 [25] The Riemann-Liouville fractional integral operator of the order @ > 0 of a
function, f € C,,u = —1 is defined as

L
I'(a)

Jef) () = — [ (x = D* f(Ddr,x >a, (3.1)

af) () = f(x). (3.2)

All the properties of the operator /¢ can be found in [19] which we mention only the
following, for f € C,, u = —1,a, = 0,rand y > —1 we have

GEH) = S H 0, (3.3)
JYEN ) = UL1EH (%) (3.4)
fxt = ey, (3.5)
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The basic definition of the Riemann—Louville fractional derivative possesses some advantages
over other definitions when used to simulate real-world phenomena in the form of a
fractional-type differential equation.

Definition 3.4 [26] The fractional derivative of the function f(x) in Caputo’s sense is defined
as

1

(p5f) =", D7) () = sz LG = W (B)de, form—1<a <
m,me€N,x > 0. (3.6)

Lemma3.1If-1<a<m,me€Nandu = —1, then
—_mk
EDENE) = F) = Zhsd fH@ (B5)a= 0 (37)

(DgJaf)(x) = f(x) (3.8)

4.Laplace Adomian Decomposition Method

This section will illustrate the basic steps for the Laplace Adomian decomposition method
(LADM). We first need the following definitions.
Definition 4.1 [27] A function f on 0 < t < oo is exponentially bounded of order o € R if

satisfies || f(t) I< Me?t, for some real constant M > 0.

Definition 3.2 The Caputo fractional derivative is defined as follows:

LD F(©)} = s°LIF®} = ) s+ fB(0),
k=0 (4.2)

where m = o + 1, and [a] represents the integer part of 0. As a result, the following useful

formula is obtained:

r(oc+1)
slo+1)

L(t%) =

o € RY. (4.b)

The last-mentioned definitions can be used in this section to discuss the general procedures for
solving the proposed mathematical model (2.2). First of all, the Laplace transform is applied

to both lift-hand and right-hand sides of Eq. (2.2) in the following form:

L(§DES1(1)) = L (B — BI(£)S1(t) — B T(t)— o« S1 (1)),
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§DES,(t) = L( B — BI(1)S,(t) — 6B T(t) — a S(1)),
SDEI() = L(—pI (1) + BI(D)(S1(t) + Sy(1))— o< I(t) + BT (L) + ol (1)),

EDET(t) = L(ul — pT— T + YT + €T),
SEDER(t) = L(—x R(t) + pT(t)). 4.1)
By applying the formula (4.a) to Eq. (4.1), we get

SUL(S,) — s715,(0) = = — BLUS,) ~ 5B L(T)~ x L(S)),

STL(S;) — 59715,(0) = = — BLUIS,) ~ SBL(T) ~ aL(Sy),

S¥L() — s*1(0) = —uL(I) + BLUS;) + BL(1Sy)— o< L(I) + BSL(T) + oL(1),

S*L(T) — s*1T(0) = uL() — pL(T)—x L(T) + YL(T) + €L(T),

S®L(R) — s* 'R(0) = —x L(R) + pL(T). 4.2)

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get

L(S,) = % - SEaL(ISl) - g L(T) — %L(Sl),

L(S,) = % + Sf+1 - :%L(ISZ) _ i—fL(T) _ %L(SZ),

L(D) = %+;—5L(1) + :%L(ISl) +S%L(152) - %L(I) + S%SL(T) +S%L(1),

L(T) = %+ Lrn-Lim-Zun+ S%L(T) + L),

L(R) = %—%L(R) + ZL(T). (4.3)

The proposed method gives the solution as an infinite series. Let the values of C = Is; and
D = Is, to be able to apply the Adomian decomposition method. We consider the solution as
an infinite series in the form

SO=) 510, HO=) 20, 1O=) L©), TO=) T,
n=0 n=0 n=0 n=0

R(D) = ) Ra(®).
n=0

(4.4)

Then, by decomposing the nonlinear part named C in the following form
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(4.5)
Here, C,, and D,, can be computed using the convolution operation as
n n
l
Cn = r(n+ 1)518"[2:‘g ILZS S“l ’
1A = £=0
D il i i, zn: is
n F(n+1)de" elig &Pzl
i=0 i=0 £=0
(4.6)

By substituting Eq. (4.4- 4.6) into Eq. (4.3) we have resulted in the form.

L<§: Sl_n(t)) - %+ Sfﬂ —%L(i )—— L(Z T (t)) - —L(Z Sln(t)>
L<§: sz,n(t)> =%+S%—S%L<i )— —L(ZT (t)> ——L(Z SZn(t)>
L(i In(t)> =%+;—5L<i In(t)> + S%L(i Cn> +S%L(i Dn> - %L(i In(t)>

n=0

n=0 n=0 n=0 n=0 n=0
o (2m0) 51 (2 00)
+ —6L () | +—L I,(t) ),
(o) A [ee] [o0) [ee)
L (Z Tn(t)> = ?4 + S%L (z In(t)) - S%L <Z Tn(t)> - %L (Z Tn(t))
n=0 n=0 n=0 n=0
()« (3m)
+—L{ Y T, |+=L| ) T ],
L <Z Rn(t)> - % - %L (Z Rn(t)) + S%L (Z Tn(t)).
n=0 n=0 n=0

(4.7)
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B 6B [

L(S11) =—5— S—aL(Co) v L(T,) — S—aL(SLo),
B 6B a

L(Sz1) = =5 — S—aL(Do) - S_aL(TO) - S—aL(Sz,o)'

L = 210+ Loncco) + Brwn - Zra0 + Loy + Zray),

L) = L1 - Lumy - Sy + Lua + Sy,

°< p
L(Ry) = _S_aL(RO) + S_aL(TO)'

B 6B «
L(Sl,n) = _S_aL(Cn—1) - s_“ L(Tn—l) - S_aL(Sl,n—l)v

OB
L(Szm) = —S%L(Dn_l) - S LT~ L(Son),
LD = 21t + Lor + Lot - Srtn + Lo+ Ziaa,

L) = Bl — BT ~ ST + LT + L),
L(Rn) - __L(Rn 1) + L(Tn 1)

(4.8)
Finally, by taking the inverse transform of Eq. (4.8), we have the following equation

51,0 = Ay, Sy0 =4y, Iy = A3, Ty = Ay, Ry = 45,

t*
Sl.l = [B - ,BCO — 6B TO_ X Sl,O] m,
SZ,l = [B — ,BDO - 5BT0 a52 0] m

a

I, =|—ul C Dy— X [ oT, Iy| ——
1= [—uly + BCo + BD, ot B 0+00]1"(a+1)'

a

T, =|uly— pTog—x Ty + YTy + €Ty| —————,
1= luly — pTy o+ YT 80]1"(01+1)

a

R, =|—-xR Tl ————, ...
1 [OC 0+p0]1—.(a+1)' )

ta'

Sin = [-BCpy — 6BT,_1— 51,n—1]m'
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B 6B a t*
San = ——aYn—1 s_“Tn_l a52n 1 r(a+1)
—U B B B t*

[, = [_aln—l + - Crq + S_aDTl—l S I+ a 6Th_q + a n—1] r(a+1)

7 p Y t*
T, = 2 n—-1 a Ty a Thq+ S_aTTl—l +— n—1] rat1)

_ P t
Ry = [__aRn—l + a'n 1] T'(Ol+ 1)
(4.9)

Similarly, at the final step, we get the rest of the terms as infinite series as,
S.(t) = Zsm(t) = A, +[B—BCo— 6B Tp— 510]m .

n=0
S,(t) = Z Syn(t) = Ay + [B — Dy — BT, — asS, 0]m .

n=0
I(t) = Z In(t) = A3 + [_I.lIO + BCO + ﬂDO_ [0 IO + ﬂ(STO + O-Io]— ooy

r(a+1)
ta
T() = D o) = Ay + Litly = pTo=ec To + YTy + ol ———+ -+,
r(a+1)

n=0

R(®) = Y R,(t) = As +[-x R Tol ——
®) Z n(6) 5+ [~ 0+p0]F(a+1)+
n=0
(4.10)

Equation (4.10) solves the main SITR model of Eq. (2.1) which will be illustrated in the next
section.

5.Numerical Simulations

In this section, we test the effectiveness of the proposed technique by examining the acquired
results for model (2.1) for different . The numerical simulations are presented by taking
partial parameters from numerical simulations in [10]. The results obtained by LADM match
the exact solutions when a = 1. Figure 2-11 provides a comparison of the results acquired
by the LADM and the MATLAB code ODE45 (Rung-Kutta of order 4 technique) for the
different model categories. It is evident from this figure that the proposed technique is efcient
and accurate, as it perfectly agrees with the MATLAB code results.
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Fig. 1 The solution of S; (t), S, (t),I(t), T(t) and R(t) obtained by Rung-Kutta of order 4

technique (ODE 45) fora = 1,and 0 < t < 30.
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Fig. 2 The solution of S; (t) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for

a=1,and0 < t < 30.
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Fig. 3 The solution of S;(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09(c)ofa=08.and 0 <t < 30.
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Fig. 4 The solution of S, (t) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for
a=1,and0 < t < 30.
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Fig. 5 The solution of S,(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09(c)ofa=0.8.and 0 <t < 30.
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Fig. 6 The solution of I(t) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for
a=1and0 < t < 30.
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Fig. 10 The solution of R(t) obtained by Rung-Kutta of order 4 technique (ODE 45) 45 for
a=1and0 < t < 30.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye




08 T T T T T
0.7 -7
”
b
7
7
0.6 , i
4
4
7/ ,’
/7 -
0.5_ , ’/ _
= ’ g
~ / b d
o , ,,/
04 % . -
// /’ ’¢’
e - -
03 __,—_’_’_,»"”,," |
P -
'0
0.2 r - = =a=1 ||
" - - —a=09
' - — —0=038
01 1 1 1 1 1
0 5 10 15 20 25 30

Fig. 11 The solution of R(t) obtained by LADM for different values of a, (a) of @ = 1, (b) of
a=09,(c)ofa=0.8.and 0 <t < 30.

6.Conclusions

we have presented an enhanced order of a nonlinear SITR system with COVID-19. The model
has been effectively solved employing two different methods, namely, the Rung-Kutta of
order 4 and the Adomian decomposition in the Laplace domain. The obtained results
guarantee accurate solutions and are examined for varied fractional-order values of a and a
transmission rate. All obtained findings have been compared and examined for different

cases. Our findings and procedures in this research can be extended or generalized further in
the resolution of other interesting nonlinear models emerging in certain phenomena in physics
and engineering. Besides, our findings can be extended for models developed with other
fractional derivatives.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



REFERENCES

1.

10.

11.

Kermack, W. O., McKendrick, A. G., A contribution to the mathematical theory of
epidemics, Proceedings of the Royal Society of London. Series A, Vol:115, No:772,
700-721, 1927.

Kucharski, A. J., Russell, T. W., Diamond, C., et al., Early dynamics of transmission
and control of COVID-19: a mathematical modelling study, The Lancet Infectious
Diseases, Vol:20, No:5, 553-558, 2020.

Institute for Health Metrics and Evaluation (IHME), COVID-19 projections, 2023.
Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., et al., Impact of non-pharmaceutical
interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, Imperial
College COVID-19 Response Team, 2020.

Prem, K., Liu, Y., Russell, T. W., et al., The effect of control strategies to reduce
social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling
study, The Lancet Public Health, Vol:5, No:5, e261-e270, 2020.

Giordano, G., Blanchini, F., Bruno, R., et al., Modelling the COVID-19 epidemic and
implementation of population-wide interventions in Italy, Nature Medicine, Vol:26,
No:6, 855-860, 2020.

Khairulbahri, M., The SEIR model incorporating asymptomatic cases, behavioral
measures, and lockdowns: Lesson learned from the COVID-19 flow in Sweden,
Biomedical Signal Processing and Control, Vol:81, 104416, 2023.

Ahmed, N., Elsonbaty, A., Raza, A., et al., Numerical simulation and stability analysis
of a novel reaction—diffusion COVID-19 model, Nonlinear Dynamics, Vol:106, 1293—
1310, 2021.

Adel, W., Giinerhan, H., Nisar, K. S., et al., Designing a novel fractional order
mathematical model for COVID-19 incorporating lockdown measures, Scientific
Reports, Vol:14, 2926, 2024.

Umar, M., Sabir, Z., Raja, M. A. Z., et al., A stochastic intelligent computing with
neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics,
Symmetry, Vol:12, No:10, 1628, 2020.

Zhuang, Z., Chen, Y., Wang, J., Fractional order SEIR model for COVID-19 with
memory effect, Nonlinear Dynamics, Vol:106, 267-279, 2021.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Funk, S., Salathé, M., Jansen, V. A. A., Modelling the influence of human behaviour
on the spread of infectious diseases: a review, Journal of the Royal Society Interface,
Vol:7, No:50, 1247-1256, 2020.

Bubar, K. M., Reinholt, K., Kissler, S. M., et al., Model-informed COVID-19 vaccine
prioritization strategies by age and serostatus, Science, Vol:371, No:6532, 916-921,
2021.

Chang, S., Pierson, E., Koh, P. W., et al., Mobility network models of COVID-19
explain inequities and inform reopening, Nature, Vol:589, No:7840, 82-87, 2021.
Chinazzi, M., Davis, J. T., Ajelli, M., et al., The effect of travel restrictions on the
spread of the 2019 novel coronavirus (COVID-19) outbreak, Science, Vol:368,
No:6489, 395-400, 2020.

Ongun, M. Y., The Laplace Adomian decomposition method for solving a model for
HIV infection of CD4+ T cells, Mathematical and Computer Modelling, Vol:53,
No:5-6, 597-603, 2011.

Hagq, F., Shah, K., Rahman, G. U., et al., Numerical solution of fractional order
smoking model via Laplace Adomian decomposition method, Alexandria Engineering
Journal, Vol:57, No:2, 1061-1069, 2018.

Baleanu, D., Aydogn, S. M., Mohammadi, H., et al., On modelling of epidemic
childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian
decomposition method, Alexandria Engineering Journal, Vol:59, No:5, 3029-3039,
2020.

Gonzélez-Gaxiola, O., Biswas, A., Optical solitons with Radhakrishnan—Kundu—
Lakshmanan equation by Laplace—Adomian decomposition method, Optik, Vol:179,
434-442,2019.

Edeki, S. O., Motsepa, T., Khalique, C. M., et al., The Greek parameters of a
continuous arithmetic Asian option pricing model via Laplace Adomian
decomposition method, Open Physics, Vol:16, No:1, 780785, 2018.

Naghipour, A., Manafian, J., Application of the Laplace Adomian decomposition and
implicit methods for solving Burgers’ equation, TWMS Journal of Pure and Applied
Mathematics, Vol:6, No:1, 68-77, 2015.

Gonzélez-Gaxiola, O., Biswas, A., W-shaped optical solitons of Chen—Lee—Liu
equation by Laplace-Adomian decomposition method, Optical and Quantum

Electronics, Vol:50, No:8, 1-11, 2018.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



23.

24.

25.

26.

27.

Paul, S., Mondal, S. P., Bhattacharya, P., Numerical solution of Lotka Volterra prey-
predator model by using Runge—Kutta—Fehlberg method and Laplace Adomian
decomposition method, Alexandria Engineering Journal, Vol:55, No:1, 613-617,
2016.

Giinerhan, H., Kaabar, M. K. A., Celik, E., Novel analytical and approximate-
analytical methods for solving the nonlinear fractional smoking mathematical model,
Sigma Journal of Engineering and Natural Sciences, Vol:41, 331-343, 2023.
Giinerhan, H., Dutta, H., Dokuyucu, M. A., et al., Analysis of a fractional HIV model
with Caputo and constant proportional Caputo operators, Chaos, Solitons & Fractals,
Vol:139, 110053, 2020.

Gtlinerhan, H., Rezazadeh, H., Adel, W., et al., Analytical approximate solution of
fractional order smoking epidemic model, Advances in Mechanical Engineering,
Vol:14, No:9, 2022.

Meenakshi, A., Renuga, E., Cep, R., Karthik, K., Analysis of Caputo Fractional-Order
Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian
Decomposition Method, Mathematics, Vol:12, No:12, 1876, 2024.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



Analytical Solution of a Mathematical Model for the
Spread of the Zika Virus

Hatira Giinerhan '

' Department of Mathematics, Faculty of Education, Kafkas University, Kars, Turkey

gunerhanhatira@gmail.com,

Abstract

In this study, a nonlinear SEIR system is analyzed to model the spread of the Zika virus,
using a modified form of the Caputo fractional derivative. Analytical and approximate-
analytical solutions of the proposed model are derived using the Laplace Adomian
Decomposition Method (LADM). The solutions are presented as rapidly converging series.
Approximate analytical solutions are obtained, demonstrating rapid convergence and
accurately capturing the system’s dynamics. The reliability of the method is verified, and the
validity of the proposed fractional-order model is substantiated.

Keywords: Caputo fractional derivative; Laplace Adomian decomposition; Zika virus;

Nonlinear system.

1.INTRODUCTION

Zika virus is an RNA virus belonging to the Flaviviridae family, first identified in 1947 in the
Zika Forest of Uganda. Although initially thought to cause only mild and self-limiting
illnesses in humans, it became a significant global public health threat during large outbreaks
in Latin America and the Caribbean between 2015 and 2016. These outbreaks revealed the
virus’s association with severe neurological complications, including microcephaly in
newborns and Guillain-Barré syndrome in adults. This led to a rapid increase in scientific
research and the implementation of control measures [1,5]. The primary transmission vector
of Zika virus is the Aedes aegypti mosquito; however, alternative transmission routes such as
sexual contact and blood transfusions have also been documented, complicating the dynamics
of disease spread [6,7].

To better understand the transmission dynamics of Zika virus and develop effective control
strategies, extensive research using mathematical modeling methods has been conducted.
Compartmental models that reflect the interactions between human and vector populations
are commonly used to simulate the spread of the disease. For instance, Lee et al. [8]
developed dynamic compartmental models that account for changes in both human and
mosquito populations, allowing for a more realistic tracking of the epidemic. Rezapour and
colleagues [9] introduced a novel mathematical framework incorporating additional
transmission parameters to better capture the complexity of Zika spread. Additionally,
Suantai et al. [10] used the classical SEIR (Susceptible-Exposed-Infectious-Recovered)
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model to perform numerical simulations, providing important insights into the temporal
progression of the epidemic.

Beyond these basic models, more complex frameworks have been developed that include
real-world factors such as seasonality, spatial heterogeneity, and social network structures
[3,4]. These advanced models play a crucial role in evaluating the effectiveness of targeted
interventions such as vector control, public awareness campaigns, and vaccination efforts,
thereby guiding public health responses. In this research, we are also exploring the potential
of using the Laplace Adomian decomposition method (LADM) to solve the
fractionalomputer virus propagation model. This method is a powerful yet straightforward
approach to tackling epidemic models and has been successfully applied in biology,
engineering, and applied mathematics. It combines the Laplace transform and the Adomian
decomposition method, offering several advantages for solving complex problems. One of
the advantages of this method is its accuracy, as by employing the Laplace transform, it
transforms the differential equations into algebraic equations, which are often easier to solve.
This transformation reduces the complexity of the problem and enables the use of powerful
algebraic techniques to obtain accurate solutions. Additionally, the Adomian decomposition
method provides a systematic and robust approach to handling nonlinear terms, allowing for
accurate approximation of the solution even in the presence of nonlinearity. This method does
not require any perturbation or linearization, nor does it need a defined size of the step like
the Rung-Kutta of order 4 technique. Various models have already been solved using this
particular technique, such as HIV infection of CD4+ T cells model [11], fractional-order
smoking model [12], epidemic childhood diseases [13], Radhakrishnan—Kundu—Lakshmanan
equation [14], Asian option pricing model [15], Burger’s equation [16], Chen-Lee-Liu
equation [17], prey-predator model [18], nonlinear fractional smoking mathematical model
[19], COVID-19 model [20], HIV model [21], Smoking epidemic model [22], fractional-
order co-infection SEIR model [23].

2.Model formulation

This section presents a comprehensive mathematical model that incorporates both primary
transmission routes of the Zika virus: vector-to-human and human-to-human. The model is
structured according to compartmental population dynamics, dividing the total human
population, denoted as Ny (), into four subgroups: susceptible humans Sy (y), exposed
humans E(y), infected humans I (y), and recovered humans Ry (y), such that:

Ny(y) =Sy (y) + Ey(y) + Iy(y) + Ry (y). Similarly, the mosquito (vector) population,
represented asNy, (), is classified into three compartments: susceptible vectors Sy, (y),
exposed vectorsEy, (y), and infected vectorsly (), satisfying the relation:

Ny(y) = Sy(y) + E,(y) + I,(y) + Ry (y). The resulting nonlinear SEIR-based model
captures the dynamics of Zika virus transmission between and within species, and the
governing differential equations are formally presented in Equation (2.1). A detailed
representation of the compartmental interactions and transmission mechanisms is outlined in
Table 1, following the structure described in [10].

Su'(®) = Ay — Su(©Bu(Iy (®) + ply()) — uSu (D),
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Ey'(t) = Bu(pIu(®) + Iy ())Su () — Ctu + pu) En(0),
Iy' (t) = xyEx(t) — (0 + py + ¥)Iu(0),

Ry'(t) = —pyRy(t) +y14(0),

Sy'(®) = Ay — Bulu@®)Sy (&) — puSy (8),

Ey'(t) = Byly(£)Sy(t) — (uy + Sy Ey(8),

Iy (t) = Ey(£)6y — uyly (2). (2.1)

By applying the fractional derivative operator Df of order @, 0 < @ < 1 in the system (2.1),
we have

§DESH() = Ay — Sy(OBu(Iy (1) + pIy () — uSy (D),

§DEEy(8) = Bu(ply(®) + Iy (©))Sy (t) — O + 1) En (8,

6DEL (8) = XuEn(6) — (0 + pu + ¥ 1 (0),

oDf Ry (8) = —uuRy(t) +y1u(0),

oDfSy(0) = Ay — Byl (©)Sy (t) — uuSy (1),

oDrEy(8) = Byl ()Sy(6) — (uy + ) Ev (D),

DIy (1) = Ev(D)dy — pyly (D). (2.2)
Intial condition

(Su)o = ki, (Endo = ka, (In)o = ks, (Ru)o = ka, (Sy)o = ks, (Ey)o = ke, (Iv)o = k7.

2.3)

Tablo1: Parameter descriptions of the SEIR nonlinear system based on the Zika virus

Parameters Details
Sy (t) Susceptible humans
Sy(t) Susceptible vector
Ey(t) Exposed humans
Ey(t) Exposed vector
Iy(t) Infected humans
I, (t) Infected vector
Ry (t) Recovered humans
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Ay Susceptible: Humans recruiting

p Susceptible: Humans to infection

By Susceptible humans to infected mosquitoes

Uy Humans: Mortality rate

Xu Infected human ratio to susceptible mosquitoes
n Treatment

y Natural rate

By Transmission ratio of the Infected humans to susceptible vector
oy Morality rate persuaded in people

Uy Natural rate of morality using the vector compartment
oy Susceptible mosquitos’ recruitment

kii=1,2, ..,7 Initial conditions

t Time

3.Basic Definitions

In this section, we will introduce some basic definitions and properties of the theory of
fractional calculus that will be later.

Definition 3.1 A real function f(x), x > 0 is said to be in the space C,, ueR if there exists
a real number P > p such that f(x) = xPf (x) where f (x)eC[0, ). Clearly C, < Cp if
u<p.

Definition 3.2 A function f(x), x > 0 is said to be in the spaceC/"", meNU{0} if f™ € C,.

Definition 3.3 [26] The Riemann-Liouville fractional integral operator of the order & > 0 of
a function, f € C,, u = —1 is defined as

USNE) = iz Jo =D (@dux >a 3.1
UJanNx) = fx). (3.2)

All the properties of the operator /¥ can be found in [19] which we mention only the
following, for f € C,, u = —1,a, = 0,rand y > —1 we have

EH@) = S H 0, (3.3)
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UEH @) = UEIEH () (3.4)

aX r(a+y+1) ) (3-5)

The basic definition of the Riemann—Louville fractional derivative possesses some
advantages over other definitions when used to simulate real-world phenomena in the form of
a fractional-type differential equation.

Definition 3.4 [25] The fractional derivative of the function f(x) in Caputo’s sense is
defined as

(Paf) 0= (1" “omf) @

m,meN,x > 0.

_ 1
o r(m-a)

f(f(x — )M fFMde, form—1<a <

(3.6)

Lemma3.1If-1<a<m,me€Nandu = —1, then
DI = () - 5P (@) (S2),a 2 0 (3.7)
(DgJaf)(x) = f(x) (3.8)

4.Laplace Adomian Decomposition Method

In this section, we will illustrate the basic steps for LADM. We discuss the following important

definitions or our research study:

Definition 4.1 [24] A function f on 0 < t < oo is exponentially bounded of order ¢ € R if

satisfies || f(t) I< Me?t, for some real constant M > 0.

Definition 3.2 The Caputo fractional derivative is defined as follows:

LD (O} = s°LF@O} = ) s7*1f0(0),
= (42)

where m = o + 1, and [«a] represents the integer part of 0. As a result, the following useful
formula is obtained:

I'(oc+1)
s(o+1)

L(t°) = o € R*. (4.b)

The last-mentioned definitions can be used in this section to discuss the general procedures for
solving the proposed mathematical model (2.2). First of all, the Laplace transform is applied

to both lift-hand and right-hand sides of Eq. (2.2) in the following form:

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



L(EDESH(6)) = L (Ay — Su(®Bu(ly(®) + ply(0)) — uSu(®)),
L(DEER (D)) = L(Bu(pln(®) + Iy (8)Su(®) = Cta + k) Ex (0)),
L(EDE (D) = LOuEn(t) — 0 + pu + v)Ip (D)),

LGDERy (1)) = L(—puRy () + v14(0),

L(§DESy (1)) = L(Ay — Bylu(D)Sy(6) — Sy (),

L(§DEEy (£)) = L(Bylu(O)Sy (£) — (uy + 84)Ey (£)),

L(§D{ 1y (£)) = L(Ey(t)dy — py Iy (1)), (4.1)
Then, by applying the formula (4.a) to Eq. (4.1), we get

a a-1 An
S*L(Sy) —s* 7 Su(0) = < BuL(UySy) — BupLIySk) — pul(Sn),

S“L(Ey) — s*'Ey(0) = ByPL(IySy) + BuL(lySy) — xuL(Ey) — uuL(Ey),
s*L(Iy) = s* My (0) = xyL(Ey) —nL(ly) — pyL(ly) — yLUy),
s*L(Ry) = s* 'Ry(0) = —uyL(Ry) + vLUy),

_ Ay
SAL(Sy) —s*715,(0) = < BvL(ySy) — uuL(Sy),

S*L(Ey) — s*'E(0) = ByL(IySy) — pyL(Ey) — SyL(Ey),

sL(Iy) — s* 'y (0) = 8y L(Ey) — uyL(Iy),
4.2)

Next, by substituting the initial conditions in Eq.(2.3) into the model (4.2), we get

L(Sy) —ﬁ+ fii’l B “L(IVSH)—ﬁH—pL(IHSH)——L(SH)
L(Ey) = = B il A “HL(ySw) — e L(Ey) — S L(Ep),

k
L(IH)=§+)S(—’;L(EH)— L) = S L(I) =< L0,

LR = 2 B Ry 4 Ln),

L(Sy) = E + izl 'BV — LUySy) — _L(SV)

Bv SH
L(Ey) = — + _L(IHSV) - _L(EV) - _L(EV)
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L) =2+ ZL(E) -2 Lay),

(4.3)

The proposed method gives the solution as an infinite series. Let the value of A =
IySy, B = ISy and C = ISy to be able to apply the Adomian decomposition method. We
consider the solution as an infinite series in the form

SH(t) = i SH,n(t) ’ EH(t) = i EH,n(t); IH(t) = i IH,n(t)-

Riy(t) = ZO Run(®), Sy(t) = ;sv,n(o, E,(t) = Z Eyn(t), I(t) = ;Iv,n(t).

(4.4)
Then, by decomposing the nonlinear part named 4, B, C in the following form
A=2An, B=ZBn, C=ch
n=0 n=0 n=0
(4.5)
Here, A, By, C,, can be computed using the convolution operation as
1 [, .
ATL :m@ ZSLIH‘iZSlSH'i )
Li=0 =0 =
1 dh [ .
B, =——— el Z ‘Sui ,
"T T+ 1Dden Vi & oHi
Li=0 i=0 de=0
1 dv[x o]
C”:F(n+1)d£” ZSIHIZSS” ’
Li=0 i=0 de=0
(4.6)

By substituting Eq. (4.4- 4.6) into Eq. (4.3) and by matching the two sides of the equation

yields the following iterative algorithm we have resulted in the form.

1 2 3 4
SH,O = ?: EH,O = ?: IH,O = ?, RH,O = ?, SV,O =
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ke k7

Evo="% I=42
1(Sin1) = g~ G LCBO) ~ L2 LCA) 5 L (5s)
L(Eyy) = ﬁ”p Pib 1 cag) +5 = L(Bo) - L(EHo) 2 L(Eno),
L(’Hl)— L(EHO)_ L(IHO)_ L(IHO)__L(IHO)
L(RHl)— L(RHo)+ =L(I10),
L(S01) = = 22 1C) =2 1(5,,),

ﬁv

Su
L(Ey,1) = — L(Co) - —L(Ev 0) — L(Ev o)

L(Iy,) = o L(EVO)— LIy o),

L(Snn) = —ﬁ B =P L) =2 L Spr),

L(Exn) —ﬁ P (A 1)+B 2 L(Bnr) = 2 L(Bun-1) = 2 L(Ens),

L(’Hn) - L(EHn 1) L(IHn 1) L(IHn 1) L(IH,n—l)f

L(RHn)— = L(Ryn- 1)+ —L(Iyy 1),

L(Syn) = — B —L(Cu) - L(SVn )

L(Eyn) = L(Cn D~ S5 L(Eyn-a) - L(EVn 1)

L(lyn) = L(EVn 1)~ L(IVn 1)

4.7)
Finally, by taking the inverse transform of Eq. (4.7), we have the following equation
Suo = k1, Eno = ko, Iyo = k3, Ryo = ky, Sy = ks,
Evo=ke Iyo=ky.

ta

Sy = [AH — BuBo — BupAo — .UHSH,O] m,
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ta
Enq = [IBHPAO + BuBo — XuEno — :uHEH,O]

r(a+1)
ta
Ina = [XuEno — Mo — tuluo — Y] Tt 1)
ta
Ry, = [.uHRH,O + YIH,O] ra+1)
£
Sy = [AV — BvCo — ﬂHSV,o] m;
ta
Ey.= [.BVCO — UuEyvo — SHEV,O] m,
@
L(Iy1) = [8vEv, — bvlvo] Tat 1)
(4.8)
Similarly, at the final step, we get the rest of the terms as infinite series as,
oo o
Su(t) = ;SH.n(t) = k1 + [~BuBo — BupAo — 1uSh,o] Ta+D + -
oo @
Eq(6) = nzoEH,n(t) = ko + [Bupdo + BuBo = unp = ko) e g5 +
oo o
Iy = ;IH'n(t) =ks + [xuEno — Muo — Uuluo — Vo] ACEE) .
oo s
Ry(t) = HZ;)RH,n(t) = kg + [tuRuo + Vino) TR
oo o
Sv(®) = z Sym(t) = ks + [~y Co — tnSv o] Ta+D +
n=0
= a
Ey(t) = HZJEV,n(t) = ke + [BvCo — nEv,o — SuEv o] ECTEVR
o »
Iy(t) = ;Iv,n(t) =ky +[0vEv o — tyly o] st

(4.9)
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Equation (4.9) solves the main SAIR model of Eq. (2.2) which will be illustrated in the next
section.

5.Numerical Simulations

In this section, we test the effectiveness of the proposed technique by examining the acquired
results for model (2.2) for different . The numerical simulations are presented by taking
partial parameters from numerical simulations in [10]. In this section, the values of various
parameters are presented for two different cases.

The results obtained by LADM match the exact solutions when ¢ = 1. Figure 1-13 presents
a comparison between the results obtained using LADM and those generated by MATLAB's
ODE45 (a Runge-Kutta 4th order method) across various model categories.It is evident from

this figure that the proposed technique is efcient and accurate, as it perfectly agrees with the
MATLAB code results.

Consider the SEIR nonlinear system based on the Zika virus with f = 0.12, Ay =
0.1, uy = 0.1, yy = 013, p = 0.14,7n = 0.15, By = 0.2,y = 0.17, 6y =
0.22, 6y = 03, uy = 0.25, k; = 0.1, k, = 0.12, k3 = 0.14, k, = 0.16, ks =
0.18, kg

0.2 and k,; = 0.22 is presented as:

S Hover Time

— S H

T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

Fig. 1 The solution of Sy (t) obtained by ODE 45 fora = 1,and 0 < t < 20.
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Fig. 2 The solution of Sy (t) obtained by LADM for different values of a, (a) of « = 1, (b)
ofa =09, (c)ofa=0.8 and 0 <t < 20.
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Fig. 3 The solution of Ey(t) obtained by ODE 45 fora = 1,and 0 < t < 20.
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Fig. 5 The solution of I;(t) obtained by ODE 45 fora = 1,and 0 < t < 20.
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a=09,(c)ofa=08 and 0 <t < 20.
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Fig. 7 The solution of Ry (t) obtained by ODE 45 fora@ = 1,and 0 < t < 20.
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Fig. 8 The solution of Ry(t) obtained by LADM for different values of a, (a) of @ = 1, (b)
ofa =09, (c)ofa=0.8 and 0 <t < 20.
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Fig. 9 The solution of Sy, (t) obtained by ODE 45 fora = 1,and 0 < t < 20.
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Fig. 10 The solution of Sy, (t) obtained by LADM for different values of a, (a) of @ = 1, (b)
ofa =09, (c)ofa=0.8 and 0 <t < 20.
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Fig. 13 The solution of Ey, (t) obtained by ODE 45 fora = 1,and 0 < t < 20.
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Fig. 14 The solution of I,(t) obtained by LADM for different values of a, (a) of &« = 1, (b)
ofa =09, (c)ofa=08and 0 <t < 20.

6.Conclusions

In this study, a nonlinear SEIR model incorporating a modified Caputo fractional derivative

was developed to analyze the transmission dynamics of the Zika virus. The model has been
successfully solved using two different approaches: the Rung-Kutta of order 4 and Laplace
Adomian decomposition method. The acquired results ensure accurate solutions and are
investigated for different values of the fractional-order a and transmission rates.All obtained
results have been analyzed and compared for various cases. The obtained results demonstrate

high accuracy and stability across various values of the fractional-order parameter a¢ and
different transmission rates. Our results and methods in this work can be further extended or
generalized in solving other interesting nonlinear models arising from some phenomena in

physics and engineering. In addition, our results can also be applied for models formulated

using other fractional derivatives.
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Abstract

In this paper the main result is a lower estimation for the norm of a resolvent operator,
the spectrum of which is a unit circle. It is shown that for arbitrary function ¢(\)
analytic on a unit circle, there exist an operator which resolvent norm is greater than

[P(N)]-
2010 Mathematics Subject Classification 57TN20

Key Words: Displacement operator with weight, reducibility, homological equation

1 Introduction

A bounded linear operator B, acting in a Banach space F(X) of functions on a set X is

called a weighted displacement operator (WDO) if it can be put into the form:
(Bu)(x) = a(z)u[a(x)], ze€X (1.1)

where a: X — X is a certain application and a(-) is a function defined on X.
Operators of the form:
(Tou)(z) = u(a(z)), zeX (1.2)

are called composition operators or displacement operators

Such operators, the algebras of operators they generate and the functional equations
linked to them, have been studied by several authors in various function spaces as indepen-
dent objects and in connection with various applications [[1] -[4]], [[6] - [11]]. The study of
a concrete class of operators is closely linked to the study of a Banach algebra generated by
such operators. In this case, commutative algebras are simpler to construct and this sim-
plifies the study of the corresponding operators. These operators examined (with « fixed)
give rise to a non-commutative Banach algebra. But if we restrict ourselves to examining
operators whose coefficients are constant or invariant with respect to the displacement
(a(a(x)) = a(x)), then the corresponding algebra of operators is commutative.

This is why it is useful to reduce the study of the given operator to the examination
of another operator with a better, constant or invariant coefficient. Similar problems have
been examined for other forms of operator. For example, one of the problems analogous
to the one examined is the problem of reducing a partial derivative (differential) operator
to a canonical form. Another analogous approach is found in the theory of linear systems

of differential equations of the form:

U(t) = A(t)u(t) (1.3)
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Let D(t) be a matrix of bounded, invertible functions with the inverse D~!(¢) also bounded.
The change in the system (1.3) of the unknown function Z(t) = D(t)u(t) is called the Li-
apounov transformation of the system. The linear system (1.3) is said to be reducible if
there is a Lyapounov transformation, reducing this system to a system with a constant
coefficient.

By analogy with the theory of differential equations, we will call the invertible operator

D of multiplication by a continuous function the Lyapounov transformation d(-) € C(X):

The weighted displacement operator (WDQO) B will be said to be reducible to a con-

stant coefficient operator, if there exists a Lyapunov transformation such that:
DBD™ ' =ayT,, ap€eC (1.4)

DBD™ ! = agT,, ot ag(a(z)) = ag(z) (1.5)

From the point of view of operator theory, these definitions mean that the operator B =
aT, is similar to the constant or invariant coefficient operator agT,. As already noted,
the Banach algebra generated by such weighted shift operators is commutative, but in the
case of examining these operators in the space L?(X, p), it is a C*-algebra. This makes it
possible, for example, to apply the spectral theorem to reducible weighted shift operators.

In this work, we examine the reducibility of weighted shift operators with continuous
coefficients, generated by periodic, continuous applications of a compact, separable topo-
logical space X . Such operators operate in classical Banach spaces of functions on X, such
as the spaces £,(X, 1) and C(X). For any « applications, the spectrum of the weighted
displacement operator depends on the space of functions considered, but in the case of a
« periodic application, the spectrum of the weighted displacement operator is the same
in the classical spaces indicated. The results obtained in the article also remain true if we
examine these operators in any Banach space of functions on X where these operators are
bounded.

2 Factorisation with displacement and homological equa-
tion

First of all, let us note that by virtue of the compactness of X, the condition of invertibility
of the operator of multiplication by a continuous function, existing in the definition of the
Lyapounov transformation, is written as the condition: d(x) # 0 for all .

Any Lyapounov transformation transforms a weighted displacement operator (1.1)
with a continuous coefficient into a weighted displacement operator (with a different con-

tinuous coefficient):

DBD™' = DaT,D™! = a(z)———

2
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This is why the question about the reducibility of the operator is equivalent to the

question about the representation of the coefficient a in form:
(2.1)

with ag-constant or invariant. Such a representation is called a factorisation with dis-
placement of the function a. Note that if the function d is invariant, then during the
Lyapounov transformation the operator reduces to itself. This is why the function d is
defined to within one multiplicative invariant factor.

The method, based on factorisation with coefficient shift, is generally used to examine
weighted shift operators on a contour [3, 4]. This research is related to singular integro-
functional equations on a I' contour, containing a singular Cauchy integral operator:

SU(z) = = / U(E) 4
mJr€—z

Note that the operator SD — DS is compact in the case of a continuous function d
and is non-compact in the case of a piecewise continuous function. This is why the con-
tinuity condition of the d-function is essential in the theory of singular integro-functional
equations.

The question relating to the existence of a factorisation with displacement for a given
function is closely linked to the solvability of the homological equation, corresponding to
the application considered. [2, 6, 7, 11] call these equations, the functional equations of

form:
(To — De(z) = p(afz)) — o(z) = f(2) (2.2)

In reality, let’s assume a(z) > 0 for all x. Denoting by
varphi(z) =In S(z), g(x)=Ina(z), &(z)=Inap(z)

and passing to the logarithm in the equality 2.1, we obtain for the function varphi the

homological equation

pla(z)) — ¢(x) = g(x) — £(2)

In general, the image of the operator T, — I is not closed and, consequently, there are no
explicit necessary and sufficient conditions for the solvability of the homological equation.
A classic example of a homological equation with bad “properties” is the equation, related
to an irrational rotation of the circle [6, 7]. If we realise the circle as a unit circle on the

complex plane.

St={zeC, |z|]=1}

then, such an application acts according to the formula a(z) = e2™ where h irrational.
The pathological properties of the corresponding homological equation are well known.

For example, in [7] it was proved that for any function other than a polynomial of z, there

3
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exists h such that the solution is a non-measurable function. This is why the existence
of a continuous or bounded solution (and consequently, the reducibility of the operator
generated by an irrational rotation, into an operator with a constant coefficient) is an
exceptional case, the set of coefficients a, for which a factorisation with displacement is
possible, is a certain non-closed subset of C(X), which cannot be described explicitly and
depends essentially on the arithmetic properties of the irrational number h.

The case of a periodic application here is singular. In this case the image of the
operator T, — I is closed, and the normally solvable homological equation is affordable
enough for the study. In [11], it has been proved that this case is unique. If the application
is invertible, then the homological equation is normally solvable in the space C(X) of
continuous functions on the compact space X if and only if « is periodic.

Let’s remind ourselves of certain notions linked to the property of a periodic applica-
tion. Let be ap(z) =z, ar(z) = alag—1(x)), k = 1,2,.... The application « is said
to be periodic with period m, if o, = ap and ap # ag for 1 < k < m. The weight x is
periodic with period p(z) if a,;) = = and ag(z) # x for 1 < k < p(x). If the application
« is periodic with period m, then each point x is periodic and the number p(x) is a divisor

of m, note that in this case, it is possible for p(x) < m for all .

Example 2.1 Consider the space :

, k
X:{z:reﬂ’”:ogrgl;tkzﬁ, ke{0,1,---,11}}

As a set in the complex plane, this space is made up of siz segments of length 2 whose

midpoints are the points O. The application o : X — X, given by:

a(z) = ei%”.z k Even
—z k Odd

is periodic with period 6, but here the point O is fixed (with period 1), there are three
periods other than zero for the points corresponding to even k, 2 periods other than zero

for the points corresponding to odd k and no points with period 6.

A topological space X is said to be a- reducible if there exists a partition of X into two
closed non-empty subsets X’ and X” which are invariant with respect to the o application.
A topological space X is said to be a- connected if such a partition is impossible. The
problem examined is also linked to the algebraicity property of the operator introduced
by Van Neumann. If the o application is periodic, then any weighted constant-coefficient
displacement operator is algebraic. This is why the necessary condition leading to a
coefficient operator is its algebraicity. A linear operator A is said to be algebraic if there

exists a polynomial
P(z) =pez* +pe-12"  + ...+ po, pr€C suchthat P(A) =0

. Such a polynomial of lowest degree is called a characteristic polynomial and is denoted

by Cha(z). The roots of Ch4(z) are called the characteristic numbers of the operator A.

4
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In a finite-dimensional space, any operator is algebraic because it is the root of its char-
acteristic polynomial (Caley-Hamilton theorem). The special cases of algebraic operators
are nilpotent operators (A™ = 0), idempotent operators (42 = A), involutive operators
(A% = I) and generalised involutive operators (A™ = I). The theory of algebraic opera-
tors is given, for example, in [8]. The equations related to generalised involutive operators
have been studied in [3]. The algebraicity condition of an operator is sufficiently strong.
This algebraicity gives rise to a series of properties that are not satisfied for any operator,
but are typical for operators in finite-dimensional spaces. The spectrum of an algebraic
operator is a finite set and coincides with the set of characteristic numbers. In this case
the image of the operator A — AI is closed for any spectral value A, which is not true for
any operator whose spectrum is a finite set.

The necessary and sufficient conditions for the algebraicity of composition operators
(without the weighted coefficient) are obtained in [9]. In [10], algebraicity conditions were
obtained for more complex weighted displacement operators and the description of their
characteristic polynomial. Here we need the main result from [10]

Let’s call it:

Theorem 2.1 Let B be a weighted displacement operator with continuous coefficient a(-).

The following conditions are equivalent:

i) There exists a polynomial:

P(z) = ngZ —i—pg,lzefl +---4+po, pr€C where py#0 suchthat P(B)=0

it) The application alpha is periodic of period m, a(x) # 0 for all x and the function

am(x) has a finite number of values.

If these conditions are satisfied, the characteristic polynomial Chpg(z) has the form :

Chp(z) = ﬁ (2 — Ap) (2.3)
k=1

wheren <m, n</{l, N #O0 M\ # N\ si k#j. ie. all the characteristic numbers
are simple.

If, on the other hand, the space X is alpha- connected, then for the algebraic operator
a(x) = C = constant and A" = C for all k. Consequently, not all roots of power m of the

number C are characteristic.

3 Reducible weighted displacement operators

The link between the factorisation problem and the homology equation for positive-valued

functions has been shown above. In the case of complex-valued functions, additional

5
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complications arise in obtaining the homology equation, due to the fact that the logarithm
is a multivariate function. We will say that there is a continuous determination of the
logarithm of the function a(x), if there is a real-valued continuous function ¥ on X such
that

a(z) = e le@Hiv()

Theorem 3.1 Let X be a a-connected space, o a periodic application and a(x) # 0 for
all x. If there is a continuous determination of the logarithm of the function a, then the

operator aT,, becomes an operator with a constant coefficient if, and only if, it is algebraic.

Proof: Let’s look at the homologous equation

pla(r)) —o(z) = f(z) (3.1)

where f(z) = g(z)—€&(x), g(z)=1Inla(z)|+i(x). Here g is a given continuous function
¢ and &(x) are unknown functions.

By virtue of the periodicity of the a application, the T, operator is algebraic and has,
according to Theorem 2.1, a simple spectrum. So we can apply the general methods for
finding algebraic operators [8].

On the other hand, here we have the equality 77" = I, hence the application

Zp >k — TF (3.2)

is a linear representation of the finite cyclic group Z,, in the space C(X). The application
of the theory of representations of groups [12] allows us to obtain much more explicit
results than in the case of any algebraic operators.

Note that we generally examine linear representations of groups in Hilbertian space.
But in the case of finite groups, the main elements of the theory of representations have
an algebraic character of their own and are true in the case of representations in Banach
spaces, in particular, for linear representations in the space C(X). The finite commutative
group Zy,, has m irreducible representations p;, these representations are one-dimensional

and act according to the form :
Zm 2k — pj(k)=wh, ot w=¢em, j=0,--,m—1 (3.3)

Any linear representation of the group Z,, can be decomposed into irreducible represen-
tations, which allows us to study the equation (3.1) in detail. This decomposition is
performed as follows:

The operators

1 m—1 )
Pj=— > wHITE (3.4)
k=0
are bounded projectors and therefore
m—1 m—1
Pi=1I, PPi=0 si k#j; To=> WP (3.5)
j=1 Jj=0

6
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The last two equalities mean that the space C(X) decomposes into a direct sum of closed
vector subspaces F; = I,,P;, and the last equality means that on the subspace E;, the
operator Tav acts as a multiplication by the number w’. Note again that here we have
T = I where all the characteristic numbers are roots of power m of 1 i.e. are of form w’
which are characteristic. In other words, there are periodic applications of period m, such

that the characteristic polynomial of Ty, is

P
Chr, (=) = [[(z™ = 1)
j=1
where m = H§:1 m;, and the degree of the characteristic polynomial is the number

Z§:1 m; < m. In this case, the projector P; is non-zero if and only if w’ is a charac-
teristic number of the operator 7.

An application with such properties was examined in the example 2.1. In this example,
the application « is periodic with period m = 6 and the characteristic polynomial is of

degree 4.

Chr,(2) = (= + 1)(z° ~ 1),

3 = —1, w* and the numbers w and w®

The characteristic numbers being w? = 1, w?, w
are not characteristic numbers of the T, operator.
From the point of view of the theory of representations, this remark means that in
general the decomposition of the representation (3.2) does not include all irreducible rep-

resentations. But the number w® = 1 is always characteristic and the projector

3

is always non-zero.

From the decomposition (3.5) we obtain that

m—1 )
T, — 1= (W —1)P;
j=1
and that
m—1
I,(To = I) =1, P;j| =In(I — Py) = kerP
j=1
so therefore, the condition:
Pyf=0 (3.6)

is a necessary and sufficient condition for the existence of a solution to the equation (3.1).
In examining the homology equation, the right-hand side f(z) = g(z) — £(x) contains

the unknown function £. This is why the solvency condition:
Pof = Pog — R =0 (3.7)

7
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will be studied as an equation with respect to the function £. There are many £ functions
for which this equation is satisfied. From the invariance condition (T,£ = &) it follows

that Pp& = &; this is why from (3.7), in a unique way we obtain the following function:

@) = (Rg)(a ;mz (3.5)

which satisfies the solvency condition. With this choice of function ¢ the condition for
solving the equation (3.1) is satisfied and consequently the other solutions differ by the
invariance of the function. To construct the Lyapounov transformation, all we need to do

is construct one of these solutions. Such a solution can be given by the expression:

m—1 1 m—1 1 1 m—1

— F E — E —kjpk

x>7,7 wj—lpjf_.i wj—llmw Talf
jfl ]—1 k=0

By virtue of the invariance of the function &, we obtain that

hence

Tkg. (3.9)

m—1 1 1 m—1 - 1 m—1 | m—1 w_kj
= i —_ Il Ll —_— -
#(2) Zwﬂ—llmkzz%w a] m wi—1

Now, let d(z) = ¢?® and ag(x) = e£®). From the homological equation we obtain the
factorisation with displacement of the coefficient a, which we needed to prove.

Here the equality is realised:

m—1
= ]I ale;(2))
7=1

meaning that the function ag(x) is a continuous determination of the root of degree m of
the function ]_[’]”_11 a(aj(z)). The function ag is constant (and the operator reduces to an
operator with a constant coefficient) if and only if [T} Ya(a;(x)) is constant. According
to Theorem 1.1, this is the algebraicity of the operator B. The theorem is proved.

Consequence: If the application is periodic, then any weighted displacement operator
reduces to an operator agTy in which |ag(x)| is an invariant function.

Proof: Let us examine the homological equation:

pla(z)) — () = f(z) (3.10)

where f(z) = g(z)é(x), ¢(z) =1Inla(z)|. This equation is solvable if, as above, we take
@) = (o)) = =5 gla
09)( m &

. In this case the function d(z) = e?(*) gives rise to the factorisation with displacement of
the coefficient a. Thus the question of reducibility boils down to a question of reducibility

of operators for which |a(z)| = 1. Below, we look at operators with such coefficients.

8
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4 Topological obstacles to reducibility

. The condition used in Theorem 3.1 for the existence of a continuous determination of

the logarithm is necessary. Let us show on an example that this condition is essential.

Example 4.1 Let X = S! and a(z) = z. This is an example of an application that
changes the orientation of the circle. For the coefficient a(z) = z we have here: a(z)a(a(z)) =
zz =1 and the operator

Bu(z) = zu(z)

is algebraic. But for the coefficient a(z) = z, there is no form factorisation:
a(z) = ap(z)—— (4.1)

Here the obstacle to factorization is the Cauchy index ind[a] of the non-degenerate con-
tinuous function a, which is defined as the increase in the argument as it travels along the
contour, divided by 2mw. In this example, the condition for the existence of a continuous
determination of the logarithm is the condition ind[a] = 0; for the function a(z) = z this

condition is not verified, so ind[a] = 1.
Suppose (4.1) is realised where the function ag(z) is invariant:
ao(z) = ao(2)

From the invariance of the function a(z) it follows that ind[ag] = 0 On the other hand,

ind[d()] = md[d(lz)] — —ind[d(2)]
Therefore s
ind[ag(z)d((zz)] = —2ind[d]

Thus, the Cauchy index of the right-hand side of (4.1) is an even number. Therefore, if
the Cauchy index of the coefficient a is odd, factorisation is impossible. In this example
ind[a] = 1 and equality (4.1) is impossible.

In general, similar obstacles arise for operator regularisation. Let X be any compact
space and

v:[0,1]2t=~()e X

a non-trivial yaw on X (i.e. a continuous application such that «(0) = (1), not homotopic
to a constant). In this case the function a(~y(t)) is a complex-valued continuous function
on [0, 1] such that a(y(0)) = a(y(1)). The increase in the continuous determination of the
argument of this function on [0, 1] is a multiple of 27; this makes it possible to define the
notion of Cauchy index on the yaw. Thus there can exist a large number of topological
invariants (the Cauchy indexes on each non-trivial yaw) on which the regularization of the

operator depends.

9
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5 Operator generated by the symmetry of the square

Let’s look in more detail at the question of obstacles to regularization using a concrete

example. Let X be a graph, represented by a square in the plane with two median lines:
X ={(x1,x2);21 € {—1,0,1}, 20 € [-1, 1]} U{(z1,22) : 1 € [-1,1], 20 € {—1,0,1}

Let’s construct the graph of Y, obtained by cutting the graph of X at the vertices of
the square. This means that instead of each of the vertices (£1,+1), we examine the
two points (41, 41)*, considering that one of these points belongs to a side of the square
merging with the vertex, and the other point belongs to the other side of the square,
merging with this same vertex. The graph Y can be realized as a subset of R?, made up
of six segments:

Y ={(0,22,0) : xz2 € [-1,1]} U {(21,0,0) : 21 € [-1, 1]} U{(—=1, 22, 22) : xo € [-1,1]}
U{(1,ze, —z2)x2 € [-1,1]} U {(x1, -1, —21) : &1 € [-1,1]} U {(x1,1,21) : 21 € [-1,1]}.

For such a realization of the graph, we obtain that :

(£1,+1)* = (£1,£1,+1) € Y

The choice of signs is such that if we go through the sides of the square in a counter-
clockwise direction (direct direction) from each vertex, we pass from the point (£1,41)~
to the point (£1,+1)*. The function a € C(X) naturally gives a function a(z1,z2,z3) =
a(x1,x9) continuous on Y and

a((£1,£1)") = a((£1,£1)7)

The graph of Y contains no trivial laces, so for the function @ on Y there is a continuous
determination of the logarithm. As the regularization question reduces to the case where

la(z)| = 1, for this case we obtain d(z) = e>™¥(®) and the difference

x(a; (£1,£1)) = ((£1,£1)7) = ((£1,£1)7)

is an integer. For the space X, we have four Cauchy indexes v (a;(£1,+1)), represent-
ing topological invariants. The reducibility of the operator depends on these topological

invariants; this dependence for different applications has various characteristics.

Theorem 5.1 Let « be an application with respect to the diagonal x1 = x2, i.e. a(x1,x2) =
(x1,x2). The operator B = aT, on X is reducible to an operator with an invariant coeffi-

ctent if and only if the three conditions are satisfied:
1) The number (a; (1,1)) is even
2) The number (a; (—1,1)) is even
3) The number (a; (—1,1)) +(a: (1,—1)) is even.

10
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Proof: Since on Y there exists a continuous determination of the logarithm of the
function tildea on Y, then for this function and by virtue of Theorem 3.1, there exists a

factorisation with displacement:

(5.1)

Here the o« application has period 2, and the T, operator generates a representation of

the Zy group. This group has only two irreducible representations.

do(x) = @ €(2) = 2 [(@) + P(a(2))] (5.2)

N =

d(z) = ™0 p(z) = _71 [¥(z) = ()] (5:3)

The invariant function dp on Y generates on X a continuous invariant function ag(x1, z2) =

a(zy, xo,x3) if and only if:

do((£1,4£1)) = do((£1,£1)7)

This condition is satisfied if, and only if, the jump of the function £ at each of the four
points (£1,+1) is an integer. Let us denote by K (&; (£1,+1)) the jump of the function £
at the point (£1,+1).

The function ¢ is continuous at the points (1,1) and (-1, —1) i.e.

K(f? (17 1)) = K(f? (_17 _1)) =0

The calculation shows that

K(E (1,1) = K&, (1,-1)) = 3 [x(as (~1,1)) = x(@ (1,-1)]

Thus, the condition of continuity of the function ag is the parity of the number x(a; (—1,1))—

x(a; (1,—1)). Similarly, the function d generates a continuous function d on X, if
d((£1,£1)%) = d((+1,+1)7)

This condition is fulfilled if and only if the jump K (p; (£1,£1)) of the function varphi
at each point of (£1,+1) is an integer. The calculation shows that these jumps are

numbers:
K(QD; (13 )) = K(f, (13 1) =0

$Ix(a; (=1,1)) = x(a; (1, -1))]

Thus, the condition of continuity of the function ag is the parity of the number
x(a;(—=1,1)) — x(a; (1,—1)). Similarly, the function tilded generates a continuous function
don X, if

d((£1,+1)%) = d((£1,£1)7).

11
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This condition is met if, and only if, the jump of the function £ at each point of
(£1,+1) is an integer. These jumps are the numbers :

K(&(-1,1)) = 3[K(a; (—1,1)) = K(a; (1, -1))]
K(&(1,-1)) = 3[K(a;(—1,1)) — K(a; (1,—1))] and the theorem is proved.

We note that, from the formula (5.2), we have

and that the conditions of the theorem are only the existence of a continuous determination
on X of the square root.
From the formula (5.3) we obtain that

o) =[]

Moreover, the conditions of the theorem are the existence conditions of a continuous

determination on X of the fourth root.
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Abstract

Anomaly detection in cybersecurity is essential for recognizing anomalies that indicate
risks, including network intrusions and insider attacks. However, it faces significant challenges,
including limited labeled data and the necessity for transparent decision-making. This study
examines the integration of few-shot learning (FSL) and explainable Al (XAI) to address these
issues by synthesizing recent advancements and proposing future research directions. FSL
approaches, including gated networks, meta-learning, and Siamese architectures, effectively
generalize from limited labeled examples, demonstrating success across diverse datasets.
Concurrently, XAI fosters user trust, compliance, and actionable insights through techniques
such as feature-attribution (e.g., SHAP, LIME), attention mechanisms, and deviation-based
learning, providing clear rationales behind anomaly detections. Therefore, this study highlights
contemporary trends in data-efficient FSL models and interpretable XAI methods, outlining
essential future directions: enhancing generalizability to unseen anomaly classes, scaling
frameworks to manage diverse datasets, and developing inherently interpretable models.
Integrating solutions for data scarcity with improved interpretability represents a promising
trajectory toward building resilient, transparent, and reliable cybersecurity frameworks, capable
of effectively responding to the rapidly evolving landscape of cyber threats.

Keywords: anomaly detection, cybersecurity, few-shot learning, explainable artificial

intelligence .

1. INTRODUCTION

Anomaly detection in cybersecurity is recognizing activity patterns that significantly
deviate from expected behavior, whether in network traffic, database queries, or user actions,
to reveal breaches, fraud, and other nefarious activities. In recent years, high-profile data
breaches have underscored both the frequency and sophistication of cyberattacks: Verizon’s
2024 Data Breach Investigations Report documents over 10,000 confirmed breaches worldwide
in a single year, with web-application exploits and stolen credentials among the most common
initial vectors (Verizon, 2024). Incidents involving insider threats, in which authorized users
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misuse their privileges, cost an average of $17.4 million and take more than 80 days to contain
(Ponemon Institute & DTEX Systems, 2025).

Traditional supervised detectors often rely on large volumes of labeled attack examples,
yet acquiring representative samples for every threat type is impractical in dynamic
environments (Guo & Zhao, 2008). Unsupervised methods can flag deviations without labels
but frequently suffer high false-alarm rates and offer little guidance on remediation (Bo Liu et
al., 2014). Semi-supervised and weakly-supervised approaches that leverage a handful of
known anomalies alongside abundant unlabeled data have demonstrated promising gains in
both accuracy and robustness. For instance, pairwise-relation networks learn discriminative
patterns by contrasting anomalous and normal pairs, thereby extending detection to novel attack
classes unseen during training (Pang et al., 2023).

Transparency is equally significant, since cybersecurity analysts need to understand the
rationale behind a model's decision to flag a session or transaction as suspicious, enabling them
to validate alerts, meet compliance requirements, and effectively respond to incidents (Drugan,
2016). By utilizing attention and feature-attribution algorithms, the signs that support anomaly
scores can be revealed, which can strengthen analyst confidence. These indicators may include
unexpected command sequences or file-access patterns (Bin Sarhan & Altwaijry, 2022).

This study examines the convergence of few-shot learning (FSL) paradigms, which seek
to generalize from limited labeled instances, with explainable AI (XAI) techniques in the
context of cybersecurity anomaly detection. This study analyzes key architectures and
investigates the potential of post-hoc and inherently interpretable mechanisms to enhance the
actionability of model outputs. The main goal of the study is to synthesize current advances,
identify gaps in deploying data-efficient, transparent detectors in real-world cyber-defense, and
outline directions for research that can meet the twin challenges of scarce labels and the
imperative for explainability.

The remainder of this paper is organized as follows: Section 2 examines the
implementation of FSL in anomaly detection, analyzing diverse approaches and their efficacy
in contexts with limited labeled data. Section 3 focuses on XAl techniques, discussing feature-
attribution methods, attention-based explanations, and other strategies that enhance the
interpretability of anomaly detection models. Section 4 examines the integration of FSL and
XAlI, highlighting how these approaches can be combined to create more transparent and
efficient anomaly detection systems. Section 5 discusses future research directions,
emphasizing the need for enhanced data efficiency, scalability, and generalizability in FSL
methods, as well as the importance of developing inherently interpretable models in XAl
Finally, Section 6 concludes the paper by summarizing the key findings and the potential of
integrating FSL and XAI in addressing the challenges of cybersecurity anomaly detection.

2. FEW-SHOT LEARNING IN ANOMALY DETECTION

FSL has emerged as an innovative approach to anomaly detection, particularly valuable
when limited labeled data is available. Traditional anomaly detection methods typically require
extensive labeled datasets for training, a condition often impractical due to the scarcity of
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anomalous data. FSL methods address this limitation by effectively leveraging minimal
examples to generalize to unseen anomaly classes (Yu & Bian, 2020).

The gated FSL technique that Huang et al. (2020) presented was created especially to deal
with issues brought on by an imbalance in data between known and unknown anomaly classes.
Their gated network structure facilitates the aggregation of known anomaly types with novel,
unseen anomalies, significantly enhancing anomaly detection performance under few-shot
conditions. Experiments conducted on the NSL-KDD dataset highlighted the model's superior
capability in detecting new types of anomalies using limited labeled data.

Another application by Yu & Bian (2020) demonstrated a FSL-based intrusion detection
system achieving remarkable accuracy with less than 1% of training data compared to
traditional methods. Their approach employed balanced resampling and an adapted deep neural
network architecture, significantly improving detection rates, especially for rare anomaly
classes such as User-to-Root (U2R) and Remote-to-Local (R2L) attacks.

Moreover, Ding et al. (2021) expanded the few-shot anomaly detection paradigm by
introducing cross-network meta-learning. Their Graph Deviation Network (GDN), combined
with a meta-learning framework, effectively transferred anomaly detection knowledge from
auxiliary networks. This method leveraged labeled anomalies from related networks to
significantly enhance the detection capability in target networks with few or even one labeled
anomaly sample.

Feng et al. (2021) also contributed significantly by developing a Few-shot Class-adaptive
Anomaly Detection (FCAD) framework that employs Model-Agnostic Meta-Learning
(MAML). Their system effectively extracted statistical, and time-series features from encrypted
network traffic, demonstrating strong generalization abilities for unseen anomaly classes during
testing phases.

Yuan et al. (2020) explored the domain of insider threat detection through a novel few-
shot approach, combining self-supervised pre-training and metric-based learning. They
effectively captured activity-type and time information from audit logs to pre-train models,
subsequently fine-tuning them with limited malicious session data to accurately identify insider
threats.

Bovenzi et al. (2024) addressed loT-specific security challenges through FSL,
demonstrating how advanced deep learning architectures could substantially enhance the
classification accuracy of IoT attack traffic, even when limited labeled data were available.
Their comprehensive empirical evaluations across diverse attack scenarios further emphasized
FSL's practical applicability in IoT environments.

Additionally Gong et al. (2020) introduced a meta-learning approach for user profiling,
leveraging time-heatmap encodings to capture temporal and behavioral patterns. This technique
excelled at few-shot personalization, demonstrating robust performance under conditions of
data imbalance and distribution shifts. The method was evaluated on internal Rakuten user
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behavior datasets, where it effectively adapted to unseen user behaviors with minimal labeled
data.

Lastly, Zhou et al. (2022) presented a Siamese Few-Shot Learning (SFSL) architecture,
enhanced by an improved contrastive loss function, to tackle insider threat detection. Their
approach focused on addressing dataset imbalance by employing pairs classification, which
allowed the model to distinguish between normal and malicious activity with limited labeled
examples.

In summary, FSL has provided robust solutions for anomaly detection challenges
stemming from scarce labeled data. Traditional machine learning approaches often rely
extensively on large datasets with sufficient labeled examples to train accurate models, which
can be a substantial obstacle in scenarios where labeled data is limited or difficult to obtain.
FSL addresses this challenge by enabling models to effectively learn from a small number of
labeled instances, thus significantly reducing the dependency on large datasets. This capability
is particularly valuable in real-world cybersecurity applications, where the costs and time
associated with labeling data can be restrictive. By leveraging FSL, anomaly detection systems
can identify previously unseen threats and detect rare or emerging attacks that may not be well-
represented in the training data. The integration of FSL into anomaly detection methodologies
has proven to enhance the accuracy and robustness of these systems, making them more
adaptable and efficient in dynamic and data-constrained environments. Consequently, FSL is
becoming increasingly indispensable in various cybersecurity contexts, such as intrusion
detection, fraud prevention, and network security, where rapid identification of anomalies is
crucial. The ability of FSL to generalize from a few examples offers considerable promise for
improving the scalability and effectiveness of anomaly detection mechanisms in real-world
settings. As a result, the literature highlights the substantial potential of FSL in diverse
cybersecurity contexts, significantly enhancing anomaly detection capabilities in real-world
applications.

3. EXPLAINABLE ATIN ANOMALY DETECTION

In safety-critical and mission-critical applications such as healthcare monitoring,
financial fraud prevention, and industrial control, the mere identification of anomalies is
insufficient without insight into why a model has flagged a particular instance. XAl techniques
address this need by translating opaque detection scores into human-interpretable rationales,
thereby fostering user trust, facilitating root-cause analysis, and guiding effective remediation
(Li et al., 2024; Salih et al., 2025).

3.1.Feature-Attribution Methods

Feature-attribution methods are a cornerstone of XAlI, particularly in anomaly detection.
These techniques aim to quantify the contribution of individual features to the anomaly score
produced by a model. These methods are as follows:

e SHAP (SHapley Additive exPlanations): SHAP employs cooperative game theoretic
Shapley values to quantify each feature’s marginal contribution to an anomaly score. By
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averaging contributions over all possible feature coalitions, SHAP delivers both local (per
instance) and global (dataset wide) explanations (Salih et al., 2025). In cybersecurity
contexts, SHAP has been used to dissect complex ensemble and deep models—such as
tree based classifiers and recurrent neural networks—revealing which traffic features or
log events drive anomaly detections (Alenezi & Ludwig, 2021; Zou & Petrosian, 2020).

e LIME (Local Interpretable Model Agnostic Explanations): LIME constructs a sparse
surrogate model—typically linear—around a single prediction by perturbing inputs and
observing output changes. The resulting feature weights indicate their local influence on
anomaly flags. While highly flexible and model-agnostic, LIME’s linear approximation
may overlook nonlinear interactions intrinsic to many anomaly detectors (Lee et al., 2024;
Salih et al., 2025).

3.2.Attention-Based Explanations

Attention mechanisms, when integrated into sequence models (e.g., LSTMs or
Transformers), inherently highlight the temporal or spatial regions most influential in triggering
an anomaly alert. For instance, in Exathlon’s benchmark for multivariate time series anomaly
detection, attention weights have been leveraged to pinpoint root cause intervals within high

dimensional streams, offering direct, model internal explanations without post hoc surrogates
(Jacob et al., 2021).

3.3.Post Hoc Perturbation and Prototype Based Methods

XALI that relies on perturbation methods, such as LIME, can employ prototype-focused
strategies. These strategies allow for the comparison of unusual instances with examples that
are considered "normal". In the context of few shot anomaly detection, Siamese network
explainers perturb input features to assess their effect on learned similarity metrics, thereby
isolating feature combinations that most discriminate anomalies from normal samples (Fedele
et al., 2024).

3.4.Prior-Driven Anomaly Score Learning

Weakly-supervised frameworks such as Deviation Networks integrate Shapley-inspired
attributions directly into the training of anomaly scores. By enforcing normal samples to follow
a chosen prior distribution and pushing labeled anomalies into the upper tail, these models yield
anomaly scores that are inherently interpretable: deviations from the prior directly signal
anomalousness, and feature-level gradients can be traced back to input dimensions (Pang et al.,
2021).

4. INTEGRATION OF FEW-SHOT LEARNING AND EXPLAINABLE Al

The convergence of few-shot learning and explainable artificial intelligence (XAI) in
anomaly detection research represents a significant advancement in addressing two critical
challenges: data scarcity and model interpretability. Several recent studies have explored this
intersection, developing methodologies that not only generalize from limited labeled data but
also offer transparent, human-interpretable explanations of anomaly detection decisions.
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A primary method is enhancing FSL frameworks using post-hoc explanation strategies.
For example, in remote sensing applications, researchers have integrated few-shot classifiers
with attention mechanisms and prototype analysis to not only detect rare or novel anomalies
(such as invasive species or environmental changes) but also to highlight the key features that
drive these decisions. This integration has proven particularly valuable in domains where
obtaining large, annotated datasets is impractical. In such settings, explainable few-shot
workflows enable models to generalize from minimal examples while simultaneously providing
interpretable evidence for each prediction (Lee et al., 2024).

A common technique involves the integration of specialized network structures, such as
Siamese networks, within the few-shot paradigm. These architectures are designed to learn
discriminative representations that can differentiate subtle variations between normal and
anomalous instances. By embedding attention modules within these networks, researchers have
been able to derive visual or quantitative explanations that pinpoint which aspects of an input
most strongly influenced the detection outcome. Such integrated systems facilitate a deeper
understanding of the underlying decision processes, thereby enhancing trust and offering
actionable insights for human analysts (Fedele et al., 2024).

Innovative methodologies also emerge from the fusion of deviation-based learning and
explainability. In these approaches, anomaly scores are derived by contrasting the
representations of normal samples—modeled under an assumed prior distribution—with those
of anomalies. This deviation framework not only enhances detection performance under
few-shot conditions but also inherently provides a rationale for why a particular sample deviates
from expected behavior. The resulting explanations, often presented through gradient or
Shapley-value analyses, offer a direct link between the detected anomaly and its contributing
features, addressing the interpretability challenge head on (Pang et al., 2021).

Themes that frequently arise in the academic literature highlight the importance of
employing attention mechanisms, the use of substitute models for local explanations, and the
investigation of metric-learning frameworks suitable for both few-shot learning and post-hoc
interpretability (Cholopoulou & lakovidis, 2024; Meng et al., 2023). The integration of these
approaches not only mitigates the challenges posed by limited labeled data but also empowers
stakeholders by elucidating the inner workings of complex detection models (Adadi & Berrada,
2018). This dual benefit is particularly crucial in critical applications, where understanding the
“why” behind an anomaly detection decision can be as important as the decision itself (J. Feng
etal., 2021).

In summary, the integration of few-shot learning with XAI techniques in anomaly
detection reflects a promising research direction. By combining the strengths of data-efficient
learning with robust interpretability methods, recent studies have laid the groundwork for more
transparent, trustworthy, and practical anomaly detection systems. Such systems are better
equipped to operate in real-world scenarios characterized by scarce labels and a high demand
for decision transparency.
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S. FUTURE TRENDS AND DIRECTIONS

Anomaly detection in cybersecurity is crucial for identifying deviations from expected
behavior, such as network intrusions and insider threats, especially given the increasing
sophistication of cyberattacks. The lack of labeled data for new risks has sparked a growing
interest in FSL techniques. Additionally, the demand for transparency has highlighted the
importance of XAIl. This section elaborates on the prior discussion regarding FSL and XAl,
highlighting potential future research directions.

Future research in FSL for anomaly detection should focus on enhancing data efficiency
and generalizability. One key direction is improving models to handle small training sets that
do not contain all anomaly classes, as suggested by Pang et al. (2023) particularly noting the
need for methods that can identify anomalies based on very few known class examples. This
includes advancing domain adaptation mechanisms, as proposed by Komisarek et al. (2022) to
leverage multi-domain network-flow-based knowledge transfer, extracting general patterns to
improve model decision boundaries across domains.

Scaling FSL frameworks is another critical area. Aharon et al. (2025) suggests future
work in optimizing ANN search for larger datasets and handling multiple baselines concurrently
(e.g., API endpoints, domains), which could enhance scalability and adaptability to evolving
threats. Additionally, integrating techniques like self-supervised pre-training, as explored by
Yuan et al. (2020) could further enhance FSL by leveraging unlabeled data, potentially
improving detection of novel anomalies.

The integration of advanced XAI techniques is essential for future anomaly detection
systems. Research should focus on designing inherently interpretable models, moving beyond
post-hoc explanations. Future work could explore attention mechanisms and feature attribution
methods, such as SHAP or LIME, to highlight key factors contributing to anomaly scores, as
suggested by Salih et al. (2025). This would enhance transparency, foster user confidence and
facilitating effective incident response, particularly in critical applications where understanding
the "why" behind detections is as important as the detection itself. Moreover, as cyber threats
become more complex, future research should address the trustworthiness and fairness of XAI
models, ensuring compliance with ethical standards. This includes developing methods to
identify and mitigate biases, as highlighted by (Zhao et al., 2025) which discusses the use of
large language models (LLMs) for anomaly detection in tabular cybersecurity data,
emphasizing zero-shot and few-shot scenarios.

The convergence of FSL and XAI in anomaly detection represents a promising research
direction for cybersecurity. Current trends highlight the development of data-efficient
frameworks and the integration of interpretable models, while future directions focus on
enhancing scalability, generalizability, and transparency. By mitigating the lack of data and
improving model interpretability, these improvements can promote the creation of resilient and
reliable systems. These systems will be effective in countering advanced cyber threats, therefore
responding to the current and progressive demands of the domain.
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6. CONCLUSIONS

This study explores the integration of FSL and XAI within cybersecurity anomaly
detection, highlighting their combined potential in addressing critical challenges posed by
limited labeled data and the necessity for interpretability. Few-shot learning techniques have
shown considerable promise in effectively identifying anomalies from minimal labeled
examples, overcoming traditional limitations in supervised and unsupervised anomaly detection
methods. Approaches such as gated networks, meta-learning, and Siamese architectures have
demonstrated impressive adaptability, particularly in scenarios where anomalous instances are
scarce or evolve rapidly.

Simultaneously, the integration of XAl techniques into these few-shot methodologies has
proven essential for translating complex, data-driven anomaly detections into actionable
insights. Methods like SHAP, LIME, attention mechanisms, and prototype-based explanations
have provided valuable transparency into model decision-making processes, significantly
improving analyst confidence, supporting effective incident responses, and meeting regulatory
compliance demands.

As a result, the future research directions should focus on further enhancing data
efficiency, scalability, and generalizability of FSL methods while refining the interpretability
of detection outputs. Efforts toward inherently explainable models rather than relying solely on
post-hoc explanations will be increasingly critical as cybersecurity threats grow more
sophisticated. Furthermore, addressing ethical concerns, fairness, and bias in anomaly detection
models will be pivotal to maintaining stakeholder trust and compliance.

The integration of FSL and XAI presents a robust framework for the development of
advanced and transparent anomaly detection systems. These integrated methodologies not only
enhance cybersecurity resilience against emerging threats but also enable proactive and
informed decision-making processes in real-world operational contexts.
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Abstract

In this study, a machine learning-based framework was developed to identify fraudulent credit
card transactions using a dataset containing 1,615 purchase records obtained from an e-
commerce company. Feature selection techniques including GainRatio, InfoGain, and Chi-
Squared were applied, and classification was carried out using various algorithms such as K-
Nearest Neighbors (KNN), Naive Bayes, J48, NBTree, Radial Basis Function (RBF) Network,
and Artificial Neural Networks (ANN) within the WEKA software environment. Among the
four distinct feature sets examined, the combination of the B attribute set with the KNN
algorithm achieved the highest F1-score, with a success rate of 95.75%. The findings suggest
that traditional and cost-efficient approaches can yield results that rival more complex deep
learning methods. This underlines the model’s practical effectiveness and its suitability for

integration into real-time fraud detection systems.

Keywords: Data Mining, Credit Card Fraud, E-Commerce, Classification Algorithms, WEKA

1.INTRODUCTION

According to the 14th annual report by CyberSource, a Visa subsidiary, approximately
0.9% of total online revenues are lost due to fraudulent activities, translating to an estimated
$3.5 billion in losses across North America alone [1]. Additionally, a study by Aouada,
Stojanovic, Ottersten, and Bahnsen found that the use of non-traditional payment systems such

as mobile and internet-based channels has contributed to a 14% increase in fraud incidents since
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2014, making detection and prevention more complex [2]. These developments indicate that
fraudsters continually evolve their tactics, giving rise to new forms of deception. As such, fraud
detection strategies must be tailored for each new dataset to remain effective.

In this context, the current study aims to develop a machine learning model capable of
identifying fraudulent e-commerce transactions. The classification process adopted is primarily
rule-based and semi-manual. Section 2 provides an overview of related academic studies;
Section 3 introduces the dataset and explains the selected features; Section 4 presents the
methodology and experimental results; and the final section summarizes the key findings and
offers concluding remarks. All data analysis was conducted using the WEKA software platform
(Version 3.8.4) [3].

While fraud detection in banking systems is relatively straightforward due to access to
extensive customer data, e-commerce platforms face significant limitations in this regard. This
data scarcity makes it more difficult to analyze user behavior and transaction legitimacy. Raj
and Portia explored a variety of fraud detection methods and categorized them by algorithmic
approach, including Bayesian learning, Hidden Markov Models, Artificial Neural Networks,
and hybrid systems [4].

Chan proposed a cost-sensitive fraud detection framework that integrates multiple fraud
detectors to enhance accuracy while managing operational cost [5]. Bhattacharyya et al. also
contributed by combining Support Vector Machines (SVM), Random Forests, and Logistic
Regression to effectively classify fraudulent activities [6].

Furthermore, Adepoju et al. assessed the applicability of supervised machine learning
techniques on corrupted datasets to improve fraud detection accuracy [7]. Vidanelage et al.
examined different classification models using Python’s Scikit-learn library to uncover
anomalies in transaction data [8]. Lastly, Seemakurthi et al. introduced a novel approach that

employs text classification to identify fraud in financial documents [9].

2. GENERAL PROPERTIES OF METHOD

In this section, the dataset used for the study is introduced, followed by a brief
explanation of the applied methods. The relational database structure utilized in the analysis is
illustrated in Figure 1, while Table 1 outlines the list of selected attributes and their respective
descriptions, all derived from the main order table.

In the context of data mining, the process of selecting relevant feature subsets plays a
critical role in ensuring accurate and efficient analysis. As the volume and dimensionality of

data grow, it becomes increasingly difficult to test and validate models effectively. Feature
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selection aims to reduce this complexity by identifying a minimal yet informative subset of
attributes that contribute most to predictive accuracy. Including too few attributes may lead to
information loss, while an excessive number of irrelevant features can introduce noise,
complicate the model, and decrease classification performance. By removing unnecessary or
redundant features, both the training time and accuracy of the classifiers can be improved,
leading to more efficient model development [10].

This study employs three widely used statistical feature selection techniques—Gain
Ratio, Chi-Squared, and Information Gain—to filter and rank the importance of input variables.
These filtering methods help simplify the feature set prior to classification. All classification
and performance evaluations were conducted using the WEKA data mining toolkit. For
consistency and comparability, default parameter settings were used across all classifiers.

Information Gain Ratio

Information Gain Ratio is a standard metric in feature selection, designed to eliminate
non-contributory variables. It works by calculating the entropy of the dataset and measuring the
information gain for each attribute. Attributes with higher gain ratios are preferred, as they
contribute more to predicting the target class. The method creates a decision subspace based on
class entropy and ranks features according to their discriminative power [11].

Chi-Squared Test (x> MapReduce)

The Chi-Squared method evaluates the statistical independence between an attribute and
the target class. It determines whether the observed distribution of class labels differs
significantly across attribute values. Attributes that show a strong dependency are considered
valuable predictors for classification tasks [11].

Gain Ratio Feature Selection

This method builds on Information Gain by normalizing it with the intrinsic information
of an attribute. It is particularly effective in mitigating the bias that occurs when attributes with
many distinct values dominate the selection process. Gain Ratio is univariate, asymmetric, and
entropy-based, and is widely used for its ability to balance information richness with attribute

generality [11].
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Figure 1.

Relational Area and Tablos of E-Commerce Sites

Table 1. Impact of Attributes on Classification Based on Selection Methods

Variable Name Meaning GainRatio ChiSquared InfoGain
Total Total purchase amount 2 1 1
Payment_ref code Bank response code 3 5 4
Amount Product price 9 12 13
OrderHour Order hour (normalized 1-24) 13 9 9
OrderDayOfWeek Day of the order (1-7) 14 10 11
NameSurnameLen Customer's ?:r?;hand surname 1 ) )
Discount_money Discount amount 15 15 15
Coupon_Discount Coupon discount amount 16 16 16
Shipped Amount Shipping cost 8 11 10
CouponlD Coupon ID 17 17 17
EmailConfirmTime Email confirmation time (1-24) 11 14 14
CustomerCitylD Customer city code 5 4 6
CustomerEmailFormat Email forér(l)e;‘;k(lcillle;smﬁed by 7 7 7
OrderBrandID Product brand ID 6
CategorylD Product category ID 4
CustomerAge Customer’s age 10
Gender Customer gender 12 12 12
IsFraud Fraud label (0: genuine, 1: Clgss Clgss leclss
fraud) Attribute Attribute Attribute
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Table 1 summarizes the impact of each attribute on the classification performance, as
determined by three different statistical feature selection techniques: GainRatio, Chi-Squared,
and Information Gain. The rankings indicate the relative importance of each attribute in terms
of its contribution to detecting fraudulent transactions. For instance, the attribute
“NameSurnameLen” (length of customer’s name and surname) received the top rank in
GainRatio and a strong ranking in both Chi-Squared and InfoGain, suggesting a significant
discriminative influence. Similarly, “Total” (total purchase amount) consistently ranked among
the most influential features across all three methods. In contrast, features such as “CouponID”
and “Discount_money” showed minimal impact on the classification and were ranked lowest.

These differences highlight how each selection method evaluates features based on
distinct criteria—GainRatio balances information gain with entropy, Chi-Squared focuses on
statistical independence, and InfoGain measures the reduction in uncertainty. By leveraging
these rankings, the study aimed to reduce dimensionality without sacrificing predictive

accuracy, thereby optimizing both model performance and processing efficiency [10][11].

2.1. Datasets and Methods

The dataset obtained from the e-commerce company originally contained 38 variables
across 1,615 order records. The final column, labeled as "IsFraud", was defined by the
company's IT department based on banking system flags. Following the application of the
GainRatio feature selection method, several attributes with a high proportion of missing values
were excluded. After this initial filtering, 17 features were retained for further analysis, as
shown in Table 1.

Selecting the optimal set of attributes significantly influences model performance
particularly in neural network-based classifiers since fewer attributes typically reduce
computational load and improve efficiency [12]. To enhance the quality of the model’s input
space, the study employed GainRatio, Information Gain, and Chi-Squared selection methods
available within the WEKA platform. The resulting feature rankings are visualized in Figure 2,
which highlights the comparative influence of each attribute across the three selection

techniques.
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Figure 2. Importance for classification [12]

Figure 2 presents a comparative line graph illustrating the ranking scores of 17 selected
attributes based on their impact on classification, as measured by GainRatio (blue line), Chi-
Squared (red line), and Information Gain (purple line). Each attribute is plotted along the
horizontal axis, while the vertical axis indicates its relative rank or importance (lower rank =
higher priority). Notably, features such as NameSurnameLen, Total, and Payment ref code
consistently rank high across all three methods, suggesting they are strong predictors in the
classification of fraudulent transactions. In contrast, attributes like CouponID,
Coupon_Discount, and Discount money showed minimal impact, ranking lowest in all
selection models. This indicates their limited contribution to improving the classifier’s
performance and justifies their exclusion in minimal feature set experiments.

Classification algorithms are generally divided into two main categories: supervised and
unsupervised learning models. In unsupervised learning, the objective is typically to uncover
hidden patterns or groupings within a dataset, often through clustering techniques. In contrast,
supervised learning focuses on building predictive models using labeled data to determine the
class membership of new, unseen instances. To evaluate performance across a range of
classification techniques, this study selects several well-established algorithms representing
diverse methodological families. These include:

e Naive Bayes (probabilistic model),

e k-Nearest Neighbors (k-NN) (instance-based learning),

e J48 Decision Tree (rule-based classifier),

e Artificial Neural Network (ANN) (connectionist model), and

e Radial Basis Function (RBF) Network (distance-based model).
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The selection of these classifiers is based on multiple evaluation criteria, such as
classification accuracy, computational efficiency, robustness to missing or irrelevant data, and
sensitivity to interdependent variables. Based on these considerations, the most suitable
algorithms chosen for this study are: Naive Bayes, RBF Network, KNN, and J48, all of which
are supported within the WEKA environment.

2.1.1. Naive Bayes

The Naive Bayes algorithm is based on Bayes’ Theorem, which offers a mathematical
model for calculating the probability of an outcome given prior knowledge of conditions related
to that outcome. Originally introduced by Thomas Bayes in the 18th century, the theorem has
since become a cornerstone of probabilistic reasoning [13].

In machine learning, the Naive Bayes classifier applies this principle to estimate the
probability that a given instance belongs to a specific class. What makes the model "naive" is
the simplifying assumption that each input feature is statistically independent of the others,
given the class label. Despite this assumption rarely holding in real-world datasets, the method
has demonstrated effective results in a wide range of classification tasks, particularly where the
data is noisy or incomplete.

The algorithm works by computing the likelihood of each class label based on the input
attributes and selecting the label with the highest probability. Due to its efficiency and
simplicity, Naive Bayes has been widely studied and utilized since the 1960s. In this study, the
Naive Bayes model is implemented using WEKA, a popular machine learning toolkit. WEKA’s
implementation of the classifier leverages probabilistic inference and uses Bayes’ Rule as the
foundation for prediction. The general formula is provided in Equation 1 [14]:

argy®* = P(Y|Xy, X5 ... Xp,) (D

P(Xy, X, ... X, |Y).P(Y)
P(Xy, Xy . Xp)

P(Y|X, X, .. X)) = (2)

Here, Y represents the target class, and X;, X, ... X;, are the feature variables.

In Naive Bayes classification, model training involves learning from prior data
distributions. Specifically, the model computes the prior probability of each class label —
represented as the second term in the numerator of Equation 2 — which reflects how frequently
each class appears in the training set. It then calculates the likelihood, or the probability of
observing the given feature values given a particular class (first term in the numerator). The

product of these terms is then divided by a normalization constant — the marginal probability
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ofthe observed data, represented by the denominator — to produce the posterior probability for

each class.

2.1.2. Decision Tree J48

Decision trees are among the most prominent non-parametric machine learning
algorithms, frequently applied in domains such as data mining, expert systems, and multivariate
data analysis. These models follow a divide-and-conquer strategy by partitioning the input
space into smaller sub-regions, thereby creating a hierarchical decision structure as illustrated
in Figure 3.

Structurally, a decision tree consists of a root node, a set of internal (decision) nodes,
leaf nodes, and branches connecting them. Each internal node performs a test on a particular
attribute and routes the data accordingly. Branches represent possible outcomes of these tests,
and leaf nodes assign class labels to terminal paths in the tree.

One of the key advantages of decision trees is their interpretability. The model can be
easily translated into a series of logical if—then rules, which makes it useful in rule-based
systems. Additionally, decision trees are often more computationally efficient than other
learning algorithms due to their hierarchical nature, which allows for early stopping at certain
decision paths.

Rather than focusing solely on achieving perfect classification on training data, it is
crucial to build simplified trees that generalize well to unseen data. This balance between
complexity and performance is essential for ensuring high accuracy during testing and
deployment stages [15].
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Figure 3. Decision Tree Classification [15]
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Figure 3 provides a visual illustration of how a decision tree classifier (specifically the
J48 algorithm) segments the feature space and forms hierarchical classification rules.

¢ On the left-hand side, the feature space defined by variables x; and x> is divided into
sub-regions based on threshold values wio and wzo . Each region corresponds to a
distinct class label: C; for circles and C» for squares.

e The right-hand side depicts the corresponding decision tree structure. The root node
performs an initial test on xi, checking whether it exceeds wio. If yes, the instance
is routed to a second decision node that tests x> against w2o. Based on the outcomes
of these comparisons, the instance is finally assigned to either class C; or Ca.

This figure demonstrates the step-by-step flow of decisions in tree-based models, where
each internal node represents a test condition and each leaf node corresponds to a classification
result. The hierarchical nature of decision trees enables efficient classification by systematically
narrowing down possibilities.

Another classifier employed in this study is J48, which serves as the Java-based
implementation of the well-established C4.5 decision tree algorithm developed by Ross
Quinlan. J48 replicates the core logic of C4.5 while providing improved integration within the
WEKA software environment.

C4.5 itself is extensively documented in Quinlan’s seminal work, which offers a
comprehensive and accessible explanation of the algorithm along with its full source code [16].
A more recent commercial extension of this model, known as C5.0, builds upon C4.5 by
incorporating minor performance enhancements and improved memory management, but

follows the same conceptual foundation.

2.1.3 Naive Bayes Tree

The Naive Bayes Tree (NBTree) is a hybrid classification algorithm that combines the
strengths of both decision trees and Naive Bayes classifiers. In this approach, the model
constructs a decision tree structure, where the internal nodes perform traditional attribute-based
splits, while the leaf nodes contain Naive Bayes classifiers that are trained on the subset of
instances reaching that leaf.

This integration allows NBTree to benefit from the interpretability of decision trees and
the probabilistic modeling power of Naive Bayes. The hybrid nature of NBTree often leads to
improved classification performance, particularly in datasets where different local regions of

the feature space exhibit different probabilistic patterns.
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During the training phase, cross-validation is employed at each decision node to
determine whether a further split would enhance predictive accuracy, or whether a Naive Bayes
model should be deployed at that point instead. This decision mechanism helps prevent
overfitting and ensures that each leaf contains a locally optimal model tailored to its subset of
data.

The algorithm is especially effective for datasets with mixed feature types and has been
implemented within platforms such as WEKA, where it is used for experiments involving both

interpretability and accuracy trade-offs.

2.1.4. k-NN (Nearest Neighbor)

The k-Nearest Neighbor (k-NN) algorithm is a widely used non-parametric learning
technique that performs both classification and regression by evaluating the proximity between
data instances in a multi-dimensional feature space. As visualized in Figure 4, k-NN operates
on the principle that a given sample should be assigned to the class most common among its k&
closest neighbors [17].

In classification tasks, the algorithm calculates the distance (commonly Euclidean)
between the query instance and all other instances in the dataset. It then identifies the & data
points with the shortest distance and classifies the new sample according to the majority label
among those neighbors. The value of &, which represents the number of neighbors to be
considered, is a critical parameter that influences the model’s accuracy and sensitivity to noise.

Figure 4 shows how the data space is divided into distinct clusters, with each symbol
type representing a different class. A new data point, marked as “X”, is classified based on the
dominant category of its closest neighboring samples. This illustrates how k-NN classifies
instances based on local data density and geometric closeness [18].

The simplicity and effectiveness of the k-NN algorithm make it suitable for various data
mining applications. However, its performance may degrade with high-dimensional datasets or
imbalanced class distributions. Therefore, preprocessing techniques such as feature scaling and

dimensionality reduction are often used to enhance its predictive capability.
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Figure 4. Classification of KNN algorithms [18]

Figure 4 illustrates the decision-making process of the k-Nearest Neighbor (k-NN)
algorithm when classifying a new data point, shown as “X”. The figure displays three distinct
clusters of training data, each represented by different shapes and colors: triangles (orange),
pentagons (green), and squares (blue), each corresponding to a unique class.

To classify the unknown instance “X”, the algorithm measures its distance from all other
data points and selects the k closest ones. The class label is then determined by the majority
class among these neighbors. In the example, “X” is connected to its nearest neighbors with
arrows, demonstrating how the surrounding cluster composition influences the final
classification.

This visualization highlights the local decision-making nature of k-NN and its reliance

on spatial relationships within the feature space.

2.1.5. ANN (Artificial Neural Network) Multilayer Perceptron

Artificial Neural Networks (ANNs) are inspired by the structure and function of
biological nerve cells in the human brain. Conceptually, an ANN is a mathematical model
designed to replicate the behavior of neurons, where each computational unit—known as a
perceptron—receives multiple input signals and processes them through a weighted sum. The
individual weights assigned to each input are learned during the training phase and adjusted
according to the characteristics of the training data.

As shown in Figure 5, a perceptron consists of multiple input channels, each multiplied
by a corresponding weight. The weighted inputs are aggregated and passed through an
activation function (or transfer function), which determines the final output of the perceptron

[19].
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A Multilayer Perceptron (MLP) is composed of multiple layers of interconnected
perceptrons. These include an input layer, one or more hidden layers, and an output layer. The
hidden layers introduce non-linearity to the model, enabling it to capture complex relationships
in the data. These layers act as transformation spaces, where inputs are mapped to outputs

through combinations of learned weights.

inputs

LI N weighted
= sum

weights
TN R

O,
O,

unit step function

Figure 5. Perceptron Diagram [19]

Figure 5 depicts a simple perceptron with four inputs, corresponding weights, a
summation function (X), and an activation function. This unit is the foundational element of
more complex ANN architectures such as the MLP.

This transformation, formed by the internal structure of the network, results in a
predictive model capable of recognizing patterns and generalizing beyond the training data. The
process of mapping input-to-output relationships through weight adjustments is mathematically

expressed in Equation 3 and defines the final learned model [19].

Z=b+ Zn X;W; 3)
i=0

In this equation:

e X represents the input features,

e w; are the corresponding weights learned during training,

e b is the bias term that shifts the activation threshold,

e 7 is the resulting linear combination of inputs and weights.

This output Z is subsequently passed through an activation function, which introduces
non-linearity into the model. This step is essential for enabling the network to solve complex
classification problems beyond linear separation.

Artificial Neural Networks (ANNs) are widely adopted for modeling systems that are
difficult to represent using traditional mathematical approaches. Due to their ability to capture

complex and non-linear relationships, they are considered a powerful tool for classification
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tasks. Among various ANN architectures, the Multilayer Perceptron (MLP) stands out by
employing the backpropagation algorithm to iteratively adjust its internal weights and optimize

classification accuracy.

2.1.6. RBF Network

The Radial Basis Function (RBF) Network is a type of artificial neural network that
employs Gaussian radial basis functions as activation mechanisms in its hidden layer. It is
particularly effective for classification tasks where input patterns are non-linearly separable.
Structurally, an RBF network consists of three layers: an input layer, a hidden layer, and an
output layer, as illustrated in Figure 6.

The hidden layer utilizes Gaussian functions to measure the similarity between input
instances and a set of prototype vectors, often determined using the K-Means clustering
algorithm. Each hidden unit represents a center, and its activation is highest when the input
closely matches that center. The degree of similarity is evaluated using Euclidean distance
between the input vector and the center of the Gaussian function.

Unlike the Multilayer Perceptron (MLP), which uses backpropagation across multiple
layers of perceptrons, the RBF network processes inputs by directly computing distances and
applying localized activation responses. The number of hidden units (denoted as k=1 to L)
corresponds to the number of Gaussian centers, and the final output is computed as a weighted

sum of these activations [20].

output classification pattern

output layer
tanh
transfer function

(pattern units)
Gaussian
transfer function

input layer
direct
transfer function

input pattern
Figure 6. Radial basis function network architecture [20]

Figure 6 illustrates the architecture of an RBF network. The input layer receives feature

vectors X1 to xn , which are passed to the hidden layer composed of radial basis units (typically
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Gaussian). Each unit computes a similarity score. These are then combined in the output layer,
where a summation function aggregates the responses using learned weights wy; to produce the

final classification output yi to ym .

3.APPLICATIONS

The overall strategy followed in this study is outlined in Figure 7, which presents a
roadmap of the classification experiments. Initially, raw transaction data and associated
attributes are preprocessed and converted into a nominal format suitable for classification
algorithms. Certain attributes containing a high proportion of missing or inconsistent values are
manually removed in this phase to improve data quality.

Following this preprocessing stage, the first classification trial—Experiment Set A—is
performed using all 17 selected attributes across six different classifiers. This provides a
baseline for measuring the performance of each model based on the True Positive (TP) rate.

Subsequent experiments aim to assess the impact of attribute reduction on classification
accuracy. Feature selection techniques available in the WEKA environment are applied to
further reduce dimensionality. The following experimental sets are configured:

e Experiment Set B: Includes only three attributes — Total Amount,

Payment ref code, and NameSurnameLen.
e Experiment Set C: Uses NameSurnamelLen and Coupon Discount.

e Experiment Set D: Contains 7Total Amount and NameSurnameLen.

( ™
Classification
p- ~ Experiment B
Raw Data of Manual Conditioning : k <
PV Further Reduction ~N
Ecommerce and trimming .
\_ Y, Classification
Experiment C
( ) \_ J
Classification s ~
Experiment A . .
Classification
N < Experiment D

Figure 7. Classification Experiment roadmap
Figure 7, visually represents the step-by-step process followed in designing and
executing classification experiments, from initial preprocessing to attribute selection and model

evaluation.
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A final experiment set is configured exclusively for the Multilayer Perceptron (MLP)
classifier. This is due to its ability to handle a reduced number of unique attributes more
effectively compared to other models.

The F-Measure performance metric is computed for all 24 classification experiments
and summarized in Table 2. These results help determine which combination of attributes and
classifier yields the most accurate outcomes.

To evaluate the models, split testing is employed. This approach is particularly useful
when dealing with large datasets or when training is resource-intensive. In this study, 70% of
the data is allocated for training and the remaining 30% is reserved for testing. This ensures
reliable estimation of each model's performance on unseen data.

Table 2. Comparative results of classification experiments (F-Measure).

Navie Bayes RBF Network KNN NBTree J48
Classification A 92.5973 % 92.5995 % 93.8998 %  95.3468 % 94.5497 %
Classification B 91.2453 % 93.2497 % 95.7497%  94.5995 %  89.7901 %
Classification C 94.6998 % 94.7499 % 94.7995%  94.6998 %  89.7076 %
Classification D 94.4215 % 94.4215 % 95.0413%  94.4215% 91.7355%

Table 3 presents a comparative summary of key classification performance metrics—
including True Positive (TP) rate, False Positive (FP) rate, precision, recall, and F-measure—
for experimental sets A, B, and C. Among the evaluated classifiers, the k-Nearest Neighbor
(KNN) algorithm achieves the highest F-measure score, indicating its superior overall
performance in these scenarios.

Table 3. Results for various metrics

Classifier Feature Selection TP Oram VP RATE  Acuity Recall F-Value ROC Rate
Status

Classification A 0.921 0.326 0.931 0.921 0.925 0.956

Navie Bayes Classification B 0.919 0.621 0.906 0.919 0.911 0.926
Classification C 0.948 0.528 0.946 0.948 0.94 0.963

Classification A 0.928 0.461 0.924 0.928 0.925 0.926

RBF Network Classification B 0.934 0.415 0.931 0.934 0.932 0.932
Classification C 0.948 0.323 0.947 0.948 0.947 0.954

Classification A 0.94 0.369 0.938 0.94 0.939 0.841

KNN Classification B 0.959 0.39 0.956 0.959 0.955 0.943
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Classification C 0.95 0.459 0.946 0.95 0.945 0.912
Classification A 0.948 0.551 0.948 0.959 0.939 0.828
NBTree Classification B 0.944 0.619 0.944 0.948 0.931 0.794
Classification C 0.948 0.528 0.946 0.948 0.94 0.963
Classification A 0.944 0.619 0.947 0.944 0.931 0.755
J48 Classification B 0.917 0.917 0.842 0.917 0.878 0.5
Classification C 0.917 0.917 0.842 0.917 0.878 0.5
KNN - Experiment Set B:
F-Measure
Given:
e Precision =0.956
e Recall =0.959
Calculation:
F1=2x 0.956x0.9%9 _ 25 221080 95749 ~ 95, 75%
0.956 + 0.959 1.915

NBTree — Experiment Set A
e Precision = 0.948
e Recall=0.959

0.948 X 0.959 1.81826

F1=2

=2 X =
0.948 + 0.959
RBF Network — Experiment Set C

e Precision = 0.947
e Recall =0.948
0.947 x 0.948
F1=2

=~ =~ Y
1907 0.9534 = 95.34%

1.795512

~ 0.94749 =~ 94.75%

= X =
0.947 + 0.948
Naive Bayes — Experiment Set C

e Precision = 0.946
e Recall =0.948
0.946 x 0.948

1.895

1.7936

F1=2

= %0946 10948

J48 — Experiment Set A
e Precision = (0.947
e Recall=0.944
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p1 g 0947 0.944 17879
= “%X0.947+0.944 _ 1.891

Table 3 provides a detailed comparison of performance metrics for various classification

~ 0.9454 ~ 94.54%

models under three experimental conditions: Classification A, B, and C. The evaluated metrics
include True Positive (TP) Rate, False Positive (FP) Rate, Precision, Recall, F-Measure, and
ROC Area (Receiver Operating Characteristic).

Across all experiments, the K-Nearest Neighbor (KNN) classifier consistently
demonstrates strong performance, particularly in Experiment B, where it achieves the highest
F-Measure (0.955) and TP Rate (0.959). This suggests that KNN is highly effective when using
a reduced subset of selected features.

The NBTree classifier also shows high effectiveness, especially in Classification A and
C, maintaining F-measure values above 0.93. Meanwhile, Naive Bayes performs steadily, with
a peak in Experiment C, reaching an F-measure of 0.94.

On the other hand, while the J48 decision tree achieves reasonable TP rates, it exhibits
relatively lower F-measure and ROC scores in all experiments, indicating limited robustness in
this context.

The ROC area, which reflects the model’s ability to distinguish between classes, is
generally high across classifiers—especially for Naive Bayes and RBF Network—further
supporting their discriminative power.

Overall, this table indicates that feature selection plays a significant role in enhancing
classification performance, and that certain classifiers, like KNN and NBTree, are better suited

for this dataset’s characteristics.

4.CONCLUSIONS

In this study, the order dataset obtained from an e-commerce platform, comprising 1,615
individual transactions, was analyzed. To evaluate model performance, the dataset was split
into a training set (70%) and a test set (30%), following a standard split-testing strategy.

Four distinct experimental setups were designed, each utilizing different combinations
of selected attributes. A total of six classification algorithms were tested using the WEKA
software environment. The table below (Table 4) presents the highest F-Measure (F1 Score)

values achieved by each classifier across all experimental scenarios.
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Table 4. Highest success rate (F1 Score) results

Classifier Highest Success Rate (F1 Score)
KNN %95,75

NBTree (Naive Bayes Tree) 294,34

RBF Network %94,75

Naive Bayes %95,7

J48 Decision Tree %94,54

ANN (Artifical Neura Network) %93.4 (guess)

Figure 8 illustrates the comparative performance of six classification algorithms applied
across four different feature sets (Experiments A, B, C, and D). Each classifier was tested under
identical conditions to determine its ability to detect fraudulent transactions based on selected
attribute combinations.

Among all classifiers and configurations, the K-Nearest Neighbor (KNN) algorithm
achieved the highest F-Measure score in Experiment B, indicating superior performance in
scenarios with a reduced but highly relevant feature subset.

This figure provides a visual overview of the consistency and effectiveness of each
classifier across varying experimental conditions, supporting a detailed comparison of their

predictive capabilities in fraud detection tasks.

120,00%

100,00%

80,00% |
60,00%
40,00%
20,00%
0,00% R - — - -

MNavie Bayes RBF KNN Ratio  NBTree J48 Ratio  Multilayer
Ratio Network Ratio Perception
Ratio

H Experiment A B Experiment B HExperiment C B Experiment D

Figure 8. Comparative classifier results
Figure 9 presents a multi-metric comparison of classification results for experimental
sets A, B, and C across five different classifiers. The metrics include True Positive Rate (TP
Rate), False Positive Rate (FP Rate), Precision, Recall, F-Measure, and ROC Area.
Among all configurations, the highest classification performance was achieved by the
k-Nearest Neighbor (KNN) classifier using k = 5, specifically within Experiment Set B, where
the model reached a peak F-Measure of 95.75%. This suggests that the reduced attribute set
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used in Experiment B, when combined with the KNN algorithm, was highly effective in
identifying fraudulent transactions.

The chart also reveals that while Naive Bayes, RBF Network, and NBTree maintained
consistent performance across all experiments, the J48 classifier exhibited relatively lower
ROC and F-measure values, indicating limitations in its classification robustness under certain
feature configurations.
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Figure 9. Values of experiments with various metrics

Effective machine learning classification depends heavily on appropriate parameter
tuning and a sufficiently representative dataset. Achieving high precision and accurate
classification often requires significant time investment in both feature engineering and model
development. Importantly, the optimal performance of a given algorithm on one dataset does
not ensure similar success on datasets with different statistical properties. Hence, rather than
seeking a universally superior algorithm, it is more valuable to determine under which specific
conditions a particular classifier outperforms others in solving a given application problem.

A comprehensive evaluation of algorithmic strengths and limitations is therefore
essential. Understanding these characteristics enables meaningful performance comparisons
and informed model selection. In this study, machine learning algorithms such as k-Nearest
Neighbor (k-NN), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest
(RF) were evaluated. These classifiers offer high accuracy and precision, irrespective of the
number of features or data size, and are known for their ease of implementation and robust
performance in predictive modeling tasks [21].

The high accuracy observed in this study can be attributed to both the nature of the
dataset and the effectiveness of the attribute selection techniques applied. The manual

classification of fraudulent transactions on the e-commerce platform has contributed to more
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reliable model training and evaluation. As a practical implication, the findings of this research
can significantly enhance the company’s fraud detection capabilities and improve operational
workflows.

For future research, the development of an integrated classification software solution
tailored to the company’s specific transaction patterns is planned. This will automate the fraud
detection process and provide real-time analytical support.

A review of existing literature on credit card fraud detection reveals that researchers
have developed various models using diverse datasets and classification techniques. The
reported success levels of these models vary considerably depending on factors such as data
quality, algorithm type, and class imbalance. A comparative summary of selected studies is
provided below, highlighting metrics such as model type, accuracy rate, and F1 score.

Table 5. Comparative Review of Selected Studies on Credit Card Fraud Detection

Reference | Dataset Model(s) Accuracy | Precision | Recall | F1 Notes / Key
Source Used Score Features

Bahnsen et | Real-time Cost-sensitive | 95.60% - - - Cost-sensitive

al. (2016) | banking data | AdaBoost approach;

[22] addressed class
imbalance

Carcillo et | Real-world Deep Learning | — - - - High accuracy

al. (2019) | transaction (Autoencoder) with feature

[23] data engineering

Dal Real  bank | Random 94.50% 90.50% 89.00% | 89.75% | Class

Pozzolo et | operations Forest, imbalance,

al. (2015) AdaBoost, ROC curve

[24] DBN analysis

Fiore et al. | Italian bank | DNN, LSTM 99.30% 95.50% 93.40% | 94.44% | WOE

(2019) [25] | data transformation,
oversampling
techniques

Sahin et al. | UCI Random 94.70% 87.30% 85.60% | 86.44% | Binary

(2013) [26] | repository Forest, Naive classification,

Bayes statistical

analysis

Jurgovsky | European LSTM 98.60% 90.80% 91.70% | 91.24% | Time series

et al. | credit card | (Recurrent features

(2018) [27] | data Neural considered

Network)

This Study | E-commerce | KNN, Naive | 95.75% 95.60% 95.90% | 95.75% | KNN showed

(Heydarov, | company Bayes, J48, | (KNN) best results;

2024) (1,615 NBTree, RBF, implemented

transactions) | ANN via WEKA

This study proposed a machine learning—based model for the detection of credit card
fraud, utilizing a dataset derived from e-commerce transactions. Among the six classifiers
evaluated, the k-Nearest Neighbor (KNN) algorithm demonstrated the best performance,
achieving 95.75% accuracy, 95.60% precision, 95.90% recall, and an F1 Score of 95.75%.
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A comparison with previous studies in the literature (see Table 5) indicates that the
model’s performance is closely aligned with prominent works such as Bahnsen et al. (2016)
and Dal Pozzolo et al. (2015). Notably, while Dal Pozzolo et al. achieved 94.50% accuracy and
an F1 Score of 89.75%, the current study attained a higher F1 Score using a simpler algorithm
and a relatively smaller, unbalanced dataset. This finding emphasizes that high performance is
still attainable through careful feature selection and algorithm choice, even in less ideal data
conditions such as those found in e-commerce environments.

In contrast, Fiore et al. (2019) reported extremely high results (99.30% accuracy,
94.44% F1 Score) using advanced deep learning techniques such as DNN and LSTM. However,
such models typically require extensive computational resources and longer training times.
From a practical standpoint, the classical classifiers used in this study (e.g., KNN, Naive Bayes,
J48, NBTree, RBF) offer key advantages, including low computational cost, high
interpretability, and rapid implementation.

Similarly, Jurgovsky et al. (2018) reached 98.60% accuracy and 91.24% F1 Score using
LSTM for time series data. While highly effective in capturing temporal dependencies, such
models also involve complex data preprocessing steps and increased model complexity. By
contrast, the relatively straightforward techniques employed here delivered competitive results
with simpler data structures, highlighting their applicability in real-world scenarios with
resource constraints.

Sahin et al. (2013) reported 94.70% accuracy and an F1 Score of 86.44% using
traditional algorithms. Although respectable, the performance of the current model surpasses
this with a higher F1 Score, underscoring the impact of optimized feature selection.

In Bahnsen et al. (2016), while 95.60% accuracy was achieved using a cost-sensitive
AdaBoost approach, key performance indicators such as precision, recall, and F1 Score were
not disclosed, limiting the ability to assess the model’s effectiveness under class imbalance
conditions. Similarly, although Carcillo et al. (2019) reported high accuracy using
Autoencoder-based deep learning, the absence of comprehensive evaluation metrics restricts a
full comparison of performance.

Overall, the findings of this study demonstrate that machine learning models with low
computational demand can still achieve high accuracy and precision in fraud detection tasks,
especially when supported by targeted attribute selection and proper classifier configuration.

This research confirms the effectiveness of classical machine learning techniques in
combating credit card fraud. The proposed model, validated on e-commerce transaction data,

shows strong potential for practical implementation. Future research should focus on
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integrating this model into real-time detection systems, as well as testing it on datasets from
various industries to improve generalizability and robustness. The adoption of such models can
help e-commerce platforms minimize financial losses by facilitating early detection of

fraudulent activity.
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Abstract

The human body exhibits heightened sensitivity to vibrations, with varied reactions
occurring among different population groups (e.g., pregnant women, children, elderly people,
etc.). In this study, a biodynamic model of a pregnant woman, a highly sensitive user group,
was developed, and the vibrations affecting the targeted body parts were analyzed. While
extant research in this field has predominantly focused on the effects of vibration on the
dynamic systems of non-pregnant individuals, studies examining the impact of vertical
vibrations on pregnant women, particularly in the sitting position under driving conditions,
are severely limited. In this context, the impact of speed humps on in-vehicle vibrations was
examined for a pregnant female driver. The analysis is conducted with the driver's seat
positioned on the half vehicle model, thereby considering the forces acting on the lumbar
region of the expectant mother and the vertical accelerations to which the head and fetus are
exposed. The system is modeled using spring, mass, and damper elements. The mathematical
structure obtained is transferred to the state space and numerically analyzed in the MATLAB
environment. The findings are presented in graphical form, and the dynamic effects on the
pregnant driver and the fetus are analyzed in detail.

Keywords: Biodynamic model; Pregnant woman; Vibration analysis.
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1.INTRODUCTION

Recently, the ride quality of automobiles has attracted a great deal of research interest, as it
directly affects both user safety and comfort. As vehicle speed increases, a substantial
interaction emerges between the road and the tires [1]. Consequently, the interaction results in
the transmission of vibrations from the vehicle's chassis to the driver's body. These vibrations
induce mechanical stresses on both the sensitive components of the vehicle and the driver [2].
Vibration transmitted through the vehicle seat causes the driver to be exposed to Whole Body
Vibration (WBV). As a consequence of WBV exposure, a range of health concerns may
emerge, along with diminished driver comfort [3]. It has been demonstrated that prolonged
exposure to vibration can result in the onset of significant health complications, including but
not limited to back pain, digestive system disorders, genitourinary problems, and hearing loss
[4]. The most salient characteristics of Whole Body Vibration (WBV) are the magnitude of
the frequency and the duration of exposure. Exposure to WBV at frequencies ranging from
0.1 Hz to 0.5 Hz has been demonstrated to induce symptoms of motion sickness, while
frequencies between 0.5 Hz and 80 Hz have been shown to exert adverse effects on health and
comfort. The frequency range that exerts the most substantial influence on human health is
situated between 5 and 9 Hz [5]. Pregnant women are one of the most sensitive groups in
terms of the impact of these frequency values on health and comfort.

The study of the impact of vibration on pregnant women is of vital importance, as it reveals
different health risks for both mother and fetus [6]. Research has indicated that pregnant
women exposed to WBV experience heightened stress levels, which can result in back pain
and musculoskeletal disorders [6,7]. As pregnancy progresses, the body undergoes various
physical changes, including an increase in body weight and a shift in the center of gravity.
These changes render individuals more susceptible to discomfort and complications induced
by vibrations [6]. Furthermore, it has been demonstrated that extended exposure of pregnant
individuals to WBV during vehicular transportation can result in a range of grave pregnancy
complications, particularly preterm delivery. A study by Adane et al. demonstrated that the
risk of adverse pregnancy outcomes increased in pregnant women exposed to WBYV in
occupational settings [8]. These vibrations have been demonstrated to elicit physical
discomfort in pregnant women and to exert a deleterious effect on the health of the fetus.
Furthermore, given its association with psychological stress, the impact of vibration on
pregnant women is multifaceted [9]. Research has demonstrated that vibration exerts a
detrimental effect on fetal oxygenation and development by diminishing blood circulation
[10]. These health problems, which are of a serious nature, have a significant impact on
travelers and pregnant women in occupational settings.

International guidelines thoroughly address the potential health effects of exposure to
vibration in occupational environments [11]. In accordance with the provisions stipulated
within the European Directive 2002/44/EC, the permissible levels of vibration to which
workers in occupational settings, including pregnant women, can be exposed are delineated
by occupational guidelines, in accordance with specified thresholds. These guidelines are
rooted in empirical evidence that demonstrates the health risks associated with long-term
exposure to vibration [12]. It has been demonstrated that pregnant women, in particular, often
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lack sufficient awareness regarding the limit values of vibration levels that are considered safe
for health during travel and the implications of exposure to such levels in occupational
settings [13]. Consequently, in order to raise awareness of the potential risks of exposure to
vibration during car travel, several studies have emphasized that expectant mothers should be
informed about these hazards and encouraged to use appropriate health services [14,15]. A
substantial body of research has been dedicated to elucidating these risks through the
utilization of scientific data, with the objective of raising awareness regarding the potential
challenges that may emerge.

A special study was conducted focusing on the experiences of pregnant women exposed to
vibration in the vehicle environment. The present study addressed the health effects of
vibrations on individuals working in particularly demanding occupational conditions and
relevant health guidelines [16]. As indicated in another study, there is an absence of literature
addressing the vibration to which pregnant women are exposed during their daily
transportation activities. A number of studies have examined the vibration levels to which
pregnant women are exposed, particularly during commuting to work or while traveling with
their families [8,9]. A similar study found that long-term vibration exposure can cause various
health problems, including musculoskeletal disorders. These effects were associated with
complications during pregnancy [6,7]. Qassem et al. employed MICRO-CAP II software to
simulate the exposure of a 60-kilogram pregnant woman to horizontal and vertical vibrations.
The results demonstrated that vibrations exert different effects on body parts, contingent on
factors such as location, type, and gestational stage. Female drivers exhibited a heightened
response compared to passengers [17]. Liang et al. proposed a half-vehicle model and a full-
vehicle model to study the effects on pregnant drivers or passengers exposed to vertical
vibration due to road disturbances [18]. In their study, Yanikoéren et al. constructed a model of
a quarter car, incorporating both the seat and the human body. They sought to ascertain the
optimal suspension parameters that would enhance driver comfort. This study focused on
optimizing the suspension design, with particular consideration given to the vibrations of the
human body [19].

The present study investigates the effects of vibrations induced by speed bumps on highways.
The investigation utilizes a half vehicle model with a seat placed upon it, upon which a
pregnant female driver is seated. The analysis evaluated the forces acting on the pregnant
woman's lumbar region and the vertical accelerations experienced by the driver's head and the
fetus. The physical model of a pregnant woman is represented using mechanical system
elements (spring, mass, and damper). The model possesses eleven degrees of freedom and is
mathematically expressed in terms of Newton-Euler and moment equations. The second-order
linear ordinary differential equations with constant coefficients were transformed into state
space form and solved by MATLAB software. The results are presented in graphical form,
and the dynamic effects on the pregnant driver and the fetus are assessed in detail.
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2.GENERAL PROPERTIES OF METHOD

The model examined in this study is comprised of two components. The initial segment
constitutes a lumped parameter model of a pregnant woman, incorporating 11 degrees of
freedom, comprising mass, spring, and shock absorber [20]. As illustrated in Figure 1, the
model displays a pregnant woman operating a vehicle, with the fetus depicted in meticulous
detail. The model facilitates the simulation of the accelerations acting on both the driver and
the fetus. Additionally, it facilitates the modeling of the lumbar region, enabling the
identification of the forces acting upon it. This approach is particularly relevant in the context
of predicting low back pain, a condition that is prevalent among pregnant women.
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Fig 1. Vibration pattern of a pregnant woman with fetus.
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The second part of the model is a half-car model set up to reproduce the bump vibrations from
the road [21]. As illustrated in Figure 2, the half-car model with the driver's seat exhibits five
degrees of freedom.
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Fig 2. Half car model.

Figure 3 illustrates the velocity bump profile employed in the study. The L in the figure
indicates the curvature length, and the H denotes the curvature height.

Fig 3. Speed bumper profile.

The road profile is modeled as a half-sinusoidal curvature and given with
Xor = Hp sin(wt)
Xor = Hp sin(w(t + 1))

where o is the circular frequency (rad/s) of the path and is expressed as mV /L. There is also a
time difference between the front and rear wheels, calculated with 7 = L,, /v.
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2.1. Mathematical Model

The Newton-Euler formulation is used to derive the mathematical model of the vehicle and
pregnant driver with fetus, whose physical model was previously described. Newton's second
law of motion can be used since all masses, except the car mass, are stated as point masses as

2 Fyi =miZ; (1)
and since the car is modeled as a rigid body

Therefore, 16 second-order linear ordinary differential equations with constant coefficients
are the resulting mathematical expressions. State spaces are used to express these equations as

X = AX + Bu 3)
y = Cx + Du 4)

where, A, B, C, and D matrices represent the system, input, output, and feedforward matrices,
respectively. The x, u, and y vectors denote the state, input, and output vectors, respectively.

Since the main goal of the subject is to represent 16 second-order differential equations using
32 first-order differential equations, matrix A is 32 by 32.

The sinusoidal road profile is the input that throws the system off balance. As a result, when
the front and rear wheels, respectively, go through a bumper at specific times, it can be
regarded as two disruptions to the system. The input matrix B is a 32x2 matrix in this sense.

3.APPLICATIONS

The biodynamic model developed in this study provides a specific tool for analyzing the
effects of surface disturbances, such as speed humps, on pregnant drivers, a vulnerable group
of passengers. The configuration of the model can be utilized in the design of seats and
suspension systems with the objective of enhancing driver comfort, particularly in the context
of automotive engineering. Furthermore, it has the potential to contribute to the development
of new human-centered safety systems that aim to limit vibration exposure for the purpose of
enhancing in-vehicle ergonomics and promoting human health. The developed system can
also be used as a simulation tool in clinical research, human health-oriented vehicle design,
and road safety studies. One of the long-term application areas of this model is determining
safe driving conditions for pregnant women.

4.CONCLUSIONS

The equations of motion were simulated numerically using the MATLAB programming
language. The following investigation will examine the accelerations to which the pregnant
woman's head is subjected.

The maximum acceleration transmitted to the cranium of a pregnant woman when she passes
through the speed breakers at 10.8 km/h is demonstrated in Figure 4. Figure 5 illustrates the
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forces acting on the lumbar region, while Figure 6 demonstrates the maximum accelerations

experienced by the fetus during the aforementioned speed transitions.
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Fig 4. Acceleration acting on the head of the pregnant driver (m/s?).
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Fig 5. Force acting on the pregnant driver's waist (N).
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v=3mls

t(s)
Fig 6. Acceleration to which the pregnant driver's fetus is exposed (m/s?).

As illustrated in Figure 7, the graph displays the maximum accelerations transferred to the
head region of both the fetus and the driver. Additionally, it showcases the variation in forces
exerted on the driver's lower back, contingent on the vehicle's velocity.
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Fig 7. Maximum accelerations acting on the fetus and head at different speeds.
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A close examination of the graphs reveals that acceleration and force values reach a
maximum at approximately 22 km/h, after which they demonstrate a pronounced downward
trend at higher speeds.

This suggests that pregnant individuals operating motor vehicles should avoid velocities of
approximately 22 km/h when traversing speed humps. To ensure optimal safety during
crossing, it is recommended that speeds be maintained at low levels (e.g., 5 km/h) or at
relatively high levels (e.g., 40-50 km/h).

During the modeling process, the damping force is defined by the relation (F; = cv), where ¢
is a constant. This relation demonstrates a direct proportionality between the damping force
and the velocity. While this assertion is theoretically valid, it is not supported by empirical
evidence. In practice, vehicle shock absorbers dampen more at high speeds. Consequently,
despite the model's precision, the mechanical components of the vehicle may sustain damage
when traversing speed breakers at high speeds. It is recommended that low-speed operation be
maintained for two reasons. Firstly, this practice is intended to avert potential mechanical
damage to the vehicle. Secondly, it is intended to minimize the adverse dynamic effects on the
pregnant driver and fetus.
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Abstract

This paper introduces strongly modified (a,h—m) -convex functions, which

generalization strongly modified 4 -convex functions, and proves some of their properties.
Hermite—Hadamard type inequalities are obtained for these functions. Furthermore, the
Riemann-Liouville integral is used to prove Hermite-Hadamard inequalities.

Keywords: Convex function; Hermite-Hadamard inequality; Riemann-Liouville integral.

1.INTRODUCTION

Convex functions play an important role in many areas of mathematics. They are particularly
significant in engineering and in the study of optimization problems. There are many
generalizations of convex functions in the literature. For instance, strongly convexity is a key
concept in this field of study. Various studies on strongly convexity can be found in the
literature (see [2,4-6,9-10]).

Definition 1. [7] Let J — R be an interval and let #:J — R be a nonnegative function. Then

the function f:[0,7] > R with »>0 is a modified / -convex function, if

fex+(1=1)y)<h(e) f(x)+(1=h(2)) f (),

holds x,y €[0,r] and ¢ €[0,1].

Definiton 2. [8] Let / R be an interval and let ¢ be a positive number. A function
f:1 >R is called strongly convex function with modulus ¢ >0, if

f(tx+(1—t)y)Stf(x)+(l—t)f(y)—ct(l—t)(y—x)z,

forall x,yel and te[O,l].
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Definition 3. [2] A function f:[0,7] >R with »>0 is a strongly modified (%,m)-convex

function with modulus ¢ >0, if
f(tx+m(l—t)y)£h(t)f(x)+m(l—h(t))f(y)—mct(l—t)(y—x)2,

holds x,ye[O,r], c>0, me[O,l] and te[O,l].

2.GENERAL PROPERTIES OF METHOD

One of the best-known inequalities in the field of convex analysis is the Hermite—Hadamard
inequality. First presented by J. Hadamard in 1893 as the Hadamard inequality. It was later
widely used as the Hermite—Hadamard inequality. This inequality provides an estimate of the
mean value of a convex function. [1-3].

Theorem 1. [3] Let f:[a,b] >R be a convex function for a<b . Then the following
inequality holds:

f(“bjg : jf(x)dxgw_

In [8], N. Merentes and K. Nikodem presented Hermite-Hadamard inequality via strongly
convex function:

Theorem 2. Let f: [a,b] — R be a strongly convex function with modulus ¢ > 0, then

f(a;b}é(b“‘)zﬁ 1 iﬂﬂdxﬁw—g(b—a)?

Definition 4. [11] Let f € L[a,b]. Then the Riemann-Liouville fractional integrals of order

S >0 are described as:

Mif(x)z#j(x—t)ﬂlf(t)dt, x>a

M f(x) =ﬁj(z—x)ﬁ‘l f(t)dt, x<b,

where I’ ( p ) is the Gamma function.
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3.APPLICATIONS

In this section, we will present some properties of the strongly modified (a,h—m) -convex

functions. Then we will prove some integral inequalities for this class of functions.

Definition 5. Let J IR be an interval, and let #:J — R be a nonnegative function. Then
the function f:[0,r] >R is called strongly modified (&,h—m) -convex function with

modulus ¢ >0, if
f(tx+m(1—t)y)£h(t“)f(x)+m(1—h(t“))f(y)—mct(l—t)(y—x)2,

holds for all x,y €[0,7], (a,m)e[0,1] and ¢ <[0,1].

Remark 1. a) If we set ¢ =1, we obtain the strongly modified (h,m) -convex function (see
(2D,

b) If we set o =m =1, we obtain the strongly modified /4 -convex function.

¢) If weset & =1 and ¢ =0, we obtain the modified (%,m)-convex function.

Proposition 1. Let f and g are strongly modified (SM) (a,h—m) -convex function, then

their sum f +g is also SM-(a,h—m)-convex function.

Proof. For x,y €[0,r], we get

(f+g)(tx+m(1—t)y):f(tx+m(1—t)y)+g(tx+m(1—t)y).

Since f and g are SM-(a,h—m)-convex function,
(f+g)(tx+m(1—t)y)£h(t“)f(x)+m(1—h(t“))f(y)—mct(l—t)(y—x)2
+h(t”‘)g(x)+m(1—h(t”’))g(y)—mct(l—t)(y—x)2

:h(t"‘)(f+g)(x)+m(l—h(t“))(f+g)(y)—mct(1—t)(y—x)2.
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Proposition 2. Let / be a SM-(a,—m)-convex function, then for scalar n>0, nf is also

SM-(a,h—m)-convex function.

Proof. For x,y e[0,r], we get
nf(tx+m(1—t)y)£n(h(t“)f(x)+m(1—h(t“))f(y)—mct(l—t)(y—x)z)

:h(t")nf(x)+m(1—h(t“))nf(y)—mct(l—t)(y—x)2.

Proposition 3. Let 4 and h, nonnegative function on J and h,(¢)<h (7). If f is SM-

(a, h, — m) -convex function, then f is also SM- (a, h — m) -convex function.
f(tx+m(1—t)y)£h2 (t”’)f(x)+m(l—h2 (t”‘))f(y)—mct(l—t)(y—x)2

<h () £ (x)+m(1=h (¢)) £ (3) = met (1=1) (y—x)".

d
Proposition 4. Let f, :[O,r] — R are SM—(a,h —m) -convex function for i € N and Zni =1
i=1
d

; then their linear combination Q(u)= Zn[fi (u), Vte[0,r] is also SM-(a,h—m)-convex

i=1
function.

Proof. By choosing x,y €[0,7] with »>0 and u=tx+m(1-¢)y;
d
Q(tx+m(1—t)y):Znifi(tx+m(1—t)y).

i=1

Since f; is SM-(a, h—m)-convex function,

i
d d

Q(tx+m(l—t)y)£h(t“)2nifi (x)+m(l—h(t“))2nifi (y)—i:nimct(l—t)(y—x)2

i=1 i=1 i=1

= h(t)Q(x)+m(1=h(t*))Q () = met (1-1)(y—x) .
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Theorem 3. Let f: [O,r] — R with >0 be a strongly modified (a,h —m) -convex function

such that for a,b€[0,7], a<b, then
a+mb) mc 1 1 ) 1 1 ¢
—F<h — d 1-h| — d
f( 2 )+ e (rjmb—a!f(x) o ( (2“Dmb—aa/jmf(x) "

i)

(#(e) £ (@)+m(1=h(e)) £ (b)=met (1=1) (b=a)’ )t

o —_—

where

F, :I(t(b_a)Jr(l_t)(%_mez dt.

Proof. For x, y e[O,r] with » >0, we get
f(term(l—t)y)Sh(t”‘)f(x)%rm(l—h(z‘”’))f(y)—mct(l—z‘)(y—x)2 (2)

1
Ifwe put ¢ = > in (2), we get

1 1 2
f(”zmyjsh(z_ajf(x)+m[1-h(2_a)jf(y)-%(y-x) @)
By choosing x =ta+m(1-t)b and y:(l—t)£+tb in (3), we obtain

m
f(a+2mbjgh(%jf(m+m(]—t)b)+m[l—h[2iaj]f((l—t)%+l‘b)

—%(i(b—a)+(l—t)(£—me2. @)

m

By integrating (4) with respect to “¢” from 0 to /, we have

f(a+2mbji1d;gh(%&jj‘f(m+m(l—z)b)dz+m(1—h(%njf((l—z)ﬁﬂbjdt

0 0 m

—%:[(t(b—a)Jr(l—t)(%—mez .
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f(a+2’”bj+%F,3h(ziajjf(“”m(l‘t)b)dﬁm[l h( Djf(l t) +tbjdt.(5)

0

Put x=ta+m(1—t)b in the first integral of (5) and x =(1 —t)i +1tb in the second integral of
m

(5), to get

+ mb 2 1 L
f(a 2m ) TF h(Z“jmb ajf dx+m (l—h(z—aDmb_aaI f(x)dx. (6)

By comparing the right-hand side of (5) and (6),

h(zl‘”)mbl ajf x)dx +m’ [1 h(;“jjmbl—aj f(x)dx

/m

:h(zianf(za+m(1—z)b)dz+m[l—h(ziaj]jf((l—r)%wbjdz.

Since f is a SM- (a, h— m) -convex function, we have

h(zi) mbl_a Tf(x)dx+m2 [1—1{%)) mbl_a f f(x)ax

a

Sh(Lj.:[(h(t“)f(a)er(l—h(t“))f(b)—mct(l—t)(b—a)z)dt (7)

From (6) and (7), we obtain

f(wzmb) i h(zlajmbl a-[f dﬁmz(l_h(z%nmbl—a J /(x)ex

Remark 2. a) If o =1 in (1), we obtain Theorem 2 of [2].
b) If @ =m=1 and h(t)=1¢ in (1), we obtain Theorem 6 of [8].

¢)If a=m=1and ¢=0 in (1), we obtain Theorem 3 of [7].
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Corollary 1. a) If we take ¢ =0 and m =1 in (1), we have

1

115 ) If dxS(l‘2h(%JJ(f<b>—f<a>>Ih<f“>df+f<a>'

0

b) If we take m =1 and %(¢)=1¢ in (1), we have

f(a+bj+c(b—a)2 | [ (x)ds

2 12 " b-a?

3 [a2° —a+1]f(a)+[a+2“ ~1]/(b) ¢(b-a)
T 2%(a+l) 2% (a+1) 6

Theorem 4. Assume that f: [O,r] —>Risa SM—(a,h—m) -convex function for a,b € [O,r]

with a < b, then we have

(22t Lo o 2]
S/{[l—h(Z%Df(a)—m(l—h(%)}f(b)—m%(%jf{%ﬂiﬁ“h(ﬂ)dt
+m Kl—h(zin f(b)wh(ziaj f[%ﬂ (8)

m

F, jtﬁ‘( t(b—a)+(1- t)(——mezdt.

Proof. Since f isa SM-(a,h —m) -convex function, then
f((l—t)x+mly)£(1—h(t“))f(x)+mh(t“)f(y)—mct(l—t)(y—x)z. (9)

. 1
By choosing ¢ = > we get

f(xzmyjS(l—h(ziajjf(xﬁmh(z%Jf(y)—%(y—x)z. (10
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Assume that x =ta+m(1—1)b and y=(1—t)£+tb in (10) to get
m
b 1 1
f(‘”z’" )S(l—h(z—ajjf(ta+m(l—t)b)+mh(2—ajf((l—t)%+tbj

”;C((b a)+(1- t)(;—mbnz (1)

Multiplying (11) with #”~' and then integrating with respect to “¢” from 0 to 1, we get

if[a +mbj "t < [1—/4[2%)]}%7@ +m(1—-t)b)dt +mh (%)jtﬂlf((l—t)%+tbjdt

0 0

m

1 b 1 1 ~1
ey

1
+mh(2iaj_([tﬂ1f((1—t)%+tbjdt. (12)

_%jtﬁ—l(;(b a)+(1- z)(——mbj]zdz.

Put x=ta+m(1—t)b in the first integral of (12) and x =(1—t)£+tb in the second integral

m
of (12), to have

a+mb) mc IYE(mb—x ) f(x)
e L E ) (e B

+m2h(ij | (mx_ajﬂl f(x) dx.
2¢ o mb—a mb—a

J

(13)

Since,
mb

[ (mb=x)"" f (x)dx=T(B)M”,f (mb)

a

jm(mx—a)ﬂ1 f(x)dx= F(ﬁ)mﬂ—leﬁf(%j
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Consequently (13) becomes,

f (“2’"[’} ’"Zﬂ F, < (;(bﬂ_ J;I)L Kl—h(ziaDMg f(mb)+mﬂ”h(2 jMﬂ f(mﬂ (14)

Also f is SM-(«a,h—m)-convex function, then

S (ta+m(1=1)p)<h(e) £ (a)+m(1=h(e*)) £ (b) =met (1-1)(b-a)’, (15)
and
f[(l—t)%+tbjSm(l—h(;“))f[%j+h(;“)f(b)—mct(l—t)(b—%jz. (16)

Multiplying (15) with (l_h(ZL“D and multiplying (16) with h(z%j, then adding (15) and

(16), we get

(1—h(2iajjf(m+m(1—r)b)+mh(2iajf((1—t)%+tbj

< (1 e el - 1)
+h(ziaj{m2 (l_h(ta))f(%J+mh<t“)f(b)—mzct(l—t)(b—%jz}

_(1_h(2iaﬁmcz(1—t)(b a) -h(; jmct(l t)(b—%jz. (17)

Multiplying (17) with #*' and then integrating with respect to “¢” from 0 to 1, we have

(1 h(zl Bjt/“ (ta+m(1-1)b dt+mh( jjt/“ ( +tb]dt
[ eyl
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ol pormt s

—(1—h(2iaj]mc(b—a)2 jrﬁ (1—t)dt—h(2iajm2c(b—%)2 jtﬁ (1-¢)dt. (18)

0 0

Put x=ta+m(1-t)b in the first integral of (18) and x :(l—t)£+tb in the second integral
m

of (18), we obtain

()] Btamn(z) [ (2] ke

a /m

s[(l—h(zian( f(a)—mf(b))—mzh[zia f(%ﬂj:t“h(t“)dt

—~
§ =
AL
2L
&\_/
1
VR
)
|
N
7 N\
|~
N—
<
Y
~
—~
3
S
N—
+
3
=
st
>
7 N\
sz|’—‘
=<
T
~
7\
| 2
N—
1

(19)

From (14) and (19), we obtain

o) o s 2]
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Remark 3. a) If « =1 in (8), we obtain Theorem 3 of [2].

b) If a =m=1 and h(t) =t in (1), we obtain the result of strongly convex function.

¢)If a=m=1and c¢=0 in (1), we obtain the result of convex function.

Corollary 2. a) If we take m =1 and ¢ =0, we have

(o) Gl e

sﬁHl—h(zian(f(a)—f(b))—h(z%)f(a)}jtﬂ1h(t”‘)dz

0

b) If we take m =1 and %(¢)=1¢ in (1), we have

f(a+bj+cﬂ(b—a)2(ﬁ2—ﬁ+2)<F(,B+1)K1 1

B 1 B
2 ) ap(pe) () (b-a) 5t (b”z—aMb—f(a)}

L@ o) s A

¢) If we take a =m =1 in (1), we have

IA

) A o s

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye

173



1 1 cﬂ(b—a)2
d) If we take m=1, h(t)=¢ and ¢ =0 in (1), we have

1(48)< BN - Lt s )+ vt 1)

2 )" (b_a)ﬂ 2 2

4.CONCLUSIONS

In this paper, we presented the term of strongly modified (a,h —m) -convex function, which

generalizes the term of a strongly convex function, and examined some of its properties. We
then proved some integral inequalities that this class of functions. In future, it will be possible
to derive several inequalities and describe new classes of convex functions using fractional
operators on this class of convex functions.
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Abstract

The golden ratio is a special numerical proportion that is considered aesthetically
pleasing and harmonious in both mathematics and art. The golden ratio, approximately equal
to 1.618, appears widely in nature and everyday life, ranging from art to sculpture and graphic
design. Throughout history, it has often been used in architecture to ensure aesthetic integrity
and visual harmony. This research aims to examine the arches of historical bridges based on
the concept of the golden ratio and evaluate these structures aesthetically. This study is
significant in revealing the aesthetic balance in the design of historical bridges through the use
of the golden ratio, thereby contributing to the preservation and evaluation of cultural
heritage. The study was carried out on three historical bridges located in Diyarbakir, a city
rich in historical and cultural heritage, hosting numerous civilizations throughout history. The
presence of the golden ratio in the arches of the examined bridges was analyzed using span-
to-height ratios. Deviations from the golden ratio were calculated, and these values were
evaluated in terms of the golden ratio-aesthetic relationship. The results showed that the
design principles used in bridge construction could be related to the golden ratio and aesthetic
criteria. Thus, the importance of examining the aesthetic values of historical structures from a
mathematical perspective was highlighted. Additionally, this study makes a significant
contribution to the field by combining the aesthetic aspect of historical structures with
mathematical analysis.

Keywords: Golden ratio; Aesthetic evaluation; Historic bridges.
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1. INTRODUCTION

Culture is the entirety of thought and artistic works unique to a society or community.
Heritage is defined as something that one generation leaves to subsequent generations (TDK,
2024). Underlying the characterization of culture as heritage is the transfer of values held by
societies to future generations (Kurtar & Somuncu, 2013). From this perspective, we can define
cultural heritage as the thoughts and artworks transmitted from previous societies or
communities to the present day. Institutions such as the United Nations Educational, Scientific,
and Cultural Organization (UNESCO) categorize cultural heritage as "tangible cultural
heritage, intangible cultural heritage, underwater cultural heritage, and natural cultural
heritage." Tangible cultural heritage is further divided into movable and immovable categories.
Sculptures, manuscripts, coins, and archaeological artifacts constitute movable cultural
heritage, while immovable cultural heritage includes historical urban fabrics, monuments, and
archaeological sites (Kuscuoglu & Tas, 2017).

Tiirkiye is a country that has hosted numerous civilizations throughout history, thus
housing significant cultural heritage. Among the important tangible cultural heritages in
Tiirkiye are historical bridges, categorized under immovable cultural heritage. Historical
bridges reflect the architectural, engineering, and aesthetic understanding of different periods
and constitute a vital part of the country's rich cultural heritage. Bridges are among the most
significant structures in human history, constructed to overcome natural obstacles such as
rivers, straits, and valleys, playing a crucial role in transportation. Bridges not only facilitate
crossings but also contribute to shortening travel distances (Tanriverdi & Giirel, 2019).
Diyarbakir is one of the provinces in Tiirkiye that houses a significant portion of these historical
bridges. Diyarbakir is a strategic intersection point linking the Mediterranean to the Persian
Gulf and the Black Sea to Mesopotamia, as well as connecting to Azerbaijan and Iran via the
Bitlis and Van Lake basins. Due to its location on important trade routes, the city has always
been a center of commerce, maintaining this characteristic across different historical periods
(Kutlay, 2012). Consequently, the city's cultural heritage preserves traces of numerous
communities and civilizations, including the Assyrians, Urartians, Hittites, Persians, Romans,
Byzantines, Umayyads, Abbasids, Artuqids, Seljuks, Aq Qoyunlu (aka. White Sheep
Turkomans), Ottomans, and ultimately, the Republic of Tirkiye (Kamuran, 2017; Kutlay,
2012). Historical structures in the city hold significant value in terms of regional cultural and
engineering heritage. Bridges in Diyarbakir are noteworthy both functionally and aesthetically.
Among the historical bridges constructed during various periods in the city are the Dicle Bridge,
Haburman Bridge, Halilivran Bridge, Sinek Bridge, Kara Ko&prii, Malabadi Bridge, and
Ambargay1 Bridge. The locations of historical bridges in Diyarbakir are shown in Figure 1.
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1. Ambarcay Bridge 2. Cungus Bridge 3. Devegecidi Bridge 4. Tigris (Dicle) Bridge 5. Haburman Bridge
6. Halilviran Bridge 7. Black Bridge 8. Karasu Bridge 9. Malabadi Bridge 10. Sancak Bridge
11. Sinek Bridge

Figure 1. Locations of historical bridges in Diyarbakir (Dalkili¢ and Halifeoglu, 2009).

It can be stated that these bridges are significant due not only to their functional roles in
connecting different regions but also to their aesthetic values and engineering techniques.
Among these, Dicle Bridge, Malabadi Bridge, and Haburman Bridge are particularly notable in
terms of engineering techniques and aesthetic values, thus forming the focus of this research.

The Dicle Bridge, named after the Tigris River over which it stands, is a significant
structure that has become a symbol of the city with its size and architecture. Because it has ten
arches, it is also known among the public as the “Ten-Arched Bridge.” The bridge was built
using cut basalt stone (Ministry of Culture and Tourism [MoCT], 2024). According to the
inscription on the bridge, one of the oldest in Diyarbakir, it was constructed in 1065 during the
Marwanid period, although some claims suggest that it may belong to different periods as well
(Yesilbas, 2007). Halifeoglu and Dalkilig¢ (2009) also stated that the bridge had been destroyed
and restored multiple times, and that three arches with wider spans were built in place of four
arches that collapsed in the middle. They suggested that the original bridge may have had eleven
arches. A visual of the Dicle Bridge is provided in Figure 2.

Figure 2. Dicle Bridge (MoCT, 2024)
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Located 104 km from the city center over the Batman Creek, which flows into the Tigris,
the Malabadi Bridge was constructed in 1147—48 by Timurtas, the ruler of the Mardin Artuqids
(Ilgazids), according to the inscription on it (Beysanoglu, 1990). The Malabadi Bridge extends
in a broken east-west axis, is steeply arched, and consists of a large central arch and four
adjacent smaller arches, making five in total (Kutlay, 2012). With its pointed main arch
spanning 40.86 meters, it is the stone arch bridge with the largest span in the world that has
survived to the present day (Silvan District Governorship, 2024). With its internal rooms, the
structure served not only the purpose of crossing the river but also provided accommodation
and resting spaces for travelers using the road (Halifeoglu, Toprak & Kavak, 2011). A visual
of the Malabadi Bridge is presented in Figure 3.

Figure 3. Malabadi Bridge (MoCT, 2024)

The Haburman Bridge is located on the Sinek Creek, which flows into the Euphrates,
along the old Cermik-Siverek road. According to the inscription on the bridge, it was built by
the Artuqids in 1179 (Halifeoglu, Toprak & Kavak, 2011). The bridge consists of a total of
three arches, with a large pointed central arch and two smaller relieving arches on the sides. A
visual of the Haburman Bridge is presented in Figure 4.

Figure 4. Haburman Bridge (MoCT, 2024)

These bridges are notable in the region not only for their functionality but also for their
aesthetic and engineering qualities. Throughout history, the golden ratio has been used as an
important element to ensure aesthetic integrity in the construction of many structures (Akin,
2021). The golden ratio is a mathematical proportion, approximately equal to 1.618, obtained
by dividing a line such that the ratio of the larger part to the smaller part is equal to the ratio of
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the whole line to the larger part (Livio, 2002; as cited in Y1lmaz, 2017). This ratio is considered
the mathematical representation of aesthetics and balance in natural entities (Akin, 2021).
Indeed, the existence of this aesthetic proportion has been observed in many architectural
structures. The Egyptian pyramids are among the first architectural structures where the golden
ratio was predominantly used (Hastiirk, 2014). Other examples where the golden ratio has been
identified include the Parthenon, considered the greatest work of Greek architecture; the
Florence Cathedral in Italy; the Notre Dame Cathedral, a prime example of French Gothic
architecture; the Eiffel Tower, the symbol of France; and the Taj Mahal, completed in the 1650s
in India (Yi1lmaz, 2017). This ratio has also been identified in some historical structures in
Tiirkiye. It is frequently observed in Seljuk-era structures, especially in portal designs; in the
plan and facade layouts of Ottoman-era buildings; and in the architectural works of Mimar
Sinan (Aki, 2021). Yilmaz (2017) identified the use of the golden ratio in three Seljuk-era
madrasas in Konya in his study. In another study, Akin (2021) found that the golden ratio was
used in Ottoman-era mosques in Diyarbakir. Other verified examples of the golden ratio include
the Divrigi Complex, Sultan Han, Sivas Gok Medrese, Istanbul Davut Pasha Mosque, and
Konya Sahip Ata Mosque (Giirsoy, 2018).

Whether the golden ratio, as a principle providing aesthetic and mathematical harmony,
is also found in historical bridges built with engineering skills—not just monumental and
religious buildings—has been a subject of curiosity. Historical bridges in Diyarbakir such as
the Dicle Bridge, Malabadi Bridge, and Haburman Bridge reflect the engineering and
architectural understanding of different periods and serve as significant examples for exploring
the relationship between aesthetic order and the golden ratio in these structures. The aim of this
study is to examine the span-to-height ratios of the arches of three historical bridges in
Diyarbakir based on the concept of the golden ratio and to evaluate these structures
aesthetically. The research aims to analyze how closely the obtained ratios align with the golden
ratio and to reveal the relationship between aesthetic and mathematical harmony in the
architectural designs of these bridges. When reviewing studies in the literature that examine the
golden ratio-aesthetic relationship in architectural facades (Akin, 2021; Akin & Aykal, 2022;
Salik, 2024; Selcuk, Sorgu¢ & Akan, 2009; Yilmaz, 2017), it is seen that most of the research
focuses on structures such as mosques, madrasas, and mausoleums, and no study has been found
related to historical bridges. In this respect, this study is expected to fill that gap in the literature
by focusing on the aesthetic and mathematical analysis of historical bridges in Diyarbakir.
Demonstrating the aesthetic balances in the designs of historical bridges through the use of the
golden ratio is important for the preservation and evaluation of cultural heritage. Evaluating
these bridges in terms of engineering and aesthetics will not only help us understand past
architectural and aesthetic perspectives but may also serve as an inspiration for modern
architectural designs.

2. GENERAL PROPERTIES OF METHOD

This research was conducted using a quantitative analysis method due to its focus on
examining the golden ratio—an aesthetic proportion—in historical bridges located in
Diyarbakir. The study is based on a descriptive approach and a scanning model that incorporates

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



a mathematical analysis process. By examining the architectural characteristics of the historical
bridges, the study aimed to determine their relationship with the golden ratio. This model seeks
to present the existing situation as it is and interpret it using an analytical approach.

The research was carried out on three historical bridges located within the borders of
Diyarbakir Province. These bridges are the Dicle Bridge, known among the public as the “Ten-
Arched Bridge,” the Malabadi Bridge, and the Haburman Bridge. The selected bridges
represent different historical periods of Diyarbakir and are architecturally prominent structures
of the city.

To conduct the related studies, historical bridges in Diyarbakir were first examined, and
then consultations were held with a field expert faculty member at the Faculty of Architecture
and Engineering at Dicle University. As a result, these three bridges were determined as the
study sites. A detailed investigation was conducted on the selected bridges. The numerical data
related to these bridges were obtained from the 9th Regional Directorate of Highways in
Diyarbakir on October 18, 2024. In this context, the presence of the golden ratio in the arches
of the specified bridges was examined through span-to-height ratios. The process was supported
by a literature review and photographs.

The study began with the assumption that the golden ratio is one of the important aesthetic
factors in historical bridges. Based on this assumption, the span-to-height ratios of the arches
of historical bridges were calculated, and their deviations from the golden ratio were
determined. The amounts of deviation were identified using the absolute difference method,
and the results were visualized with tables for each bridge. These analyses provided a basis for
interpreting the aesthetic and mathematical features of the bridges. Thus, by identifying how
closely these ratios approach the golden ratio value of 1.618 and determining the deviations,
golden ratio-aesthetic evaluations were made for each arch. Ideally, if a ratio is close to 1.618,
it indicates that the structure uses the golden ratio.

3. APPLICATIONS

The historical bridges examined within the scope of this study were evaluated based on
their arches. These evaluations were made using the span-to-height ratios of the arches. The
data for the Dicle Bridge (Ten-Arched Bridge), one of the bridges examined in the study, are
presented in Table 1.

Table 1. Data for Dicle Bridge

Arch Span Height Ratio Deviation Amount
Arch 1 8.48 4.98 1.703 0.085
Arch 2 8.04 5.01 1.605 0.013
Arch 3 13.84 7.97 1.737 0.119
Arch 4 11.97 6.97 1.717 0.099
Arch 5 13.92 7.76 1.794 0.176
Arch 6 8.38 4.77 1.757 0.139
Arch 7 8.73 4.74 1.842 0.224
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Arch 8 8.45 5.53 1.528 0.090
Arch 9 8.59 4.93 1.742 0.124
Arch 10 8.15 4.92 1.657 0.039

Table 1 shows the span-to-height ratios of the arches of the Dicle Bridge. It can be seen
that arches 1, 2, 6, 7, 8, 9, and 10 are of similar dimensions, while arches 3, 4, and 5 have
noticeably wider spans. As observed in the table, the span-to-height ratios of the arches range
between 1.528 and 1.842. The lowest deviation amount was found in arch 2 (0.013), while the
highest deviation was in arch 7 (0.224). To better illustrate the deviations from the golden ratio,
these data are shown in the bar graph in Figure 5.
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Figure 5. Span-to-Height Ratios and Golden Ratio Deviations of Dicle Bridge

The arches of the Dicle Bridge generally exhibit a close alignment with the golden
ratio. The overall proximity of the arches to the golden ratio suggests that the arches were not
designed randomly, that the golden ratio may have been used deliberately, and that aesthetic
concerns were considered. The data for the Malabadi Bridge, another bridge examined in this
study, are presented in Table 2.

Table 2. Data for Malabadi Bridge

Arch Span Height Ratio Deviation Amount
Arch 1 40.85 23.78 1.718 0.100
Arch 2 4.28 6.81 1.591 0.027
Arch 3 5.67 10.18 1.795 0.177
Arch 4 5.66 7.66 1.353 0.265

The Malabadi Bridge consists of a main arch (Arch 1) and four smaller arches. The fifth
arch was closed in 1955 with the construction of a reinforced concrete bridge, so data for this
arch were not included in the analysis. In the smaller arches (2, 3, and 4), height exceeds span,
so height-to-span ratios were calculated instead of span-to-height ratios. As shown in Table 2,
the ratios range from 1.353 to 1.795. The lowest deviation amount was found in arch 2 (0.027),
and the highest in arch 4 (0.265). The deviation of the main arch from the golden ratio was
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determined to be 0.1. To better illustrate the deviations from the golden ratio, these values are
shown in the bar graph in Figure 6.
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Figure 6. Span-to-Height Ratios and Golden Ratio Deviations of Malabadi Bridge

As shown in Figure 6, the arches of the Malabadi Bridge generally exhibit proximity to
the golden ratio. Arch 2 is the closest to the golden ratio. While arches 1 and 2 reflect the
aesthetic effect of the golden ratio, arches 3 and 4 show greater deviation. Therefore, the
significant deviations in some arches make it difficult to determine whether these proportions
were used intentionally or resulted from functional requirements. However, it can be said that
while aesthetic aspects were prioritized in the main and second arches, engineering
requirements had more influence on the design of the other two. The data for the Haburman
Bridge, another bridge examined in the study, are presented in Table 3.

Table 3. Data for Haburman Bridge

Arch Span Height Ratio Deviation Amount
Central Arch 19.00 11.20 1.696 0.078
East Arch 5.30 4.50 1.778 0.160
West Arch 7.10 5.50 1.291 0.327

The Haburman Bridge consists of a central arch, referred to as the main arch, and two
smaller arches. As seen in Table 3, the lowest deviation amount is in the central arch (0.078).
The other two arches show higher deviations compared to the central arch. In particular, the
west arch deviates significantly from the golden ratio. To better illustrate the deviations from
the golden ratio, these data are shown in the bar graph in Figure 7.
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Figure 7. Span-to-Height Ratios and Golden Ratio Deviations of Haburman Bridge

As also shown in Figure 3, the central arch of the Haburman Bridge, which can be
considered the main arch, is close to the golden ratio. However, the west arch exhibits a higher
deviation, and its span-to-height ratio diverges from the golden ratio. This suggests that while
overall attention was paid to aesthetics in the bridge, in the west arch in particular, engineering
requirements took precedence over aesthetics.

4. CONCLUSIONS

In this study, based on the idea that the golden ratio can be an effective universal aesthetic
criterion in architectural structures, three historical bridges located in Diyarbakir were
examined in the context of the compatibility of their arch structures with the golden ratio and
their aesthetic relationship. The span-to-height ratios of the arches in the historical bridges were
calculated, and the deviations from the golden ratio were determined for each arch individually.
In this way, it was aimed to better understand the relationship between the arches and the golden
ratio and their aesthetic harmony.

In the Dicle Bridge, it was observed that seven of the arches have similar span sizes, while
three arches are significantly wider. Halifeoglu et al. (2009) stated that these three spans were
constructed in place of four arches of similar size that previously existed but had collapsed, and
that the original bridge possibly had eleven arches. Although the arches of the Dicle Bridge
display different ratios, they generally exhibit a balanced structure both functionally and
aesthetically due to their closeness to the golden ratio. Proximity to the golden ratio can be
considered an indicator of aesthetic harmony in historical structures. This suggests that the
bridge should be evaluated not only from an engineering perspective but also as a product of
artistic design.

The arches of the Malabadi and Haburman Bridges show variation in their closeness to
the golden ratio. In the Malabadi Bridge, arches 1 and 2 present strong aesthetic value, whereas
arches 3 and especially 4 are more distant from the golden ratio. In the Haburman Bridge, the
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central arch has a value close to the golden ratio, but the third arch deviates more significantly.
This indicates that both aesthetics and functionality were considered in the design of these
bridges. While general attention was paid to aesthetic harmony, it appears that in the smaller
arches—compared to the main arches—engineering requirements were prioritized over
aesthetics. Thus, it can be said that each arch plays a different role in terms of aesthetic harmony
and engineering necessities.

As a result, it was found that the span-to-height ratios of the arches in the examined
bridges generally show values close to the golden ratio. While aesthetic concerns are thought
to have influenced all the arches in the Dicle Bridge, in the Malabadi and Haburman Bridges,
the main arches stand out more in terms of aesthetics, and in some of the smaller arches,
engineering necessities appear to be more dominant. These findings suggest that the golden
ratio may have been used consciously or intuitively as an aesthetic design element in the
examined bridges. Therefore, although the influence of the golden ratio on the aesthetic
structure is generally observable in these bridges, whether this was a conscious design decision
or a natural result of functional requirements remains open to discussion. Nevertheless, it can
be concluded that the relationship between the golden ratio and aesthetics has had a significant
impact on these historical structures.

Based on the results of the study, the following recommendations are proposed:

This study is limited to three historical bridges in Diyarbakir. The presence of a golden
ratio—aesthetic relationship in historical bridges can also be examined in bridges built in
different periods or located in different provinces.

In this research, the presence of the golden ratio in historical bridges was determined
through the span-to-height ratio of the arches. The presence of the golden ratio and its aesthetic
relationship can also be examined using different methods, such as the solid-void ratio of
facades.

The presence of the golden ratio in the design of the Dicle, Malabadi, and Haburman
Bridges demonstrates that aesthetic factors were considered during their construction processes.
Accordingly, it is recommended that aesthetic concerns be considered alongside engineering
requirements during the restoration and preservation of historical bridges.

The historical use of the golden ratio as an aesthetic element can also serve as a valuable
guide for modern engineering and architectural design. Therefore, taking aesthetic principles
and the golden ratio into account in today’s bridge projects may result in more harmonious
structures in both functional and aesthetic terms.

The fact that engineering requirements took precedence in some arches indicates a
compromise on aesthetics. In this context, a multidisciplinary approach can be adopted during
the design phase of new bridges to balance engineering and aesthetic considerations.
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Abstract

One of the most essential goals of mathematics instruction is to help students develop
and apply statistical literacy skills. However, several research studies indicate that
mathematics teachers and students struggle with statistics when it comes to teaching and
learning. Developing approaches is essential to overcome these struggles and increase
statistical literacy. This article presents a review of the literature on statistical literacy among
middle school students and provides an informative guide to statistics education researchers
and statistics/mathematics teachers alike. This systematic review, using the PRISMA
framework, analyses 20 research articles to provide an overview of studies on statistical
literacy among middle school students. It examines six key themes in detail: year of the study,
research method, grade level, data collection tools, data analysis method, interdisciplinary
concept in statistical literacy, and methods and strategies used in developing it. Furthermore,
this research primarily concentrates on studies that emphasise interdisciplinary approaches.
The main outcome of this review is to lay the groundwork for an effort to create an
interdisciplinary educational program. According to the results of the present review, we
conclude that improvements in data literacy and different methods have been developed to
increase middle school students' statistical literacy.

Keywords: interdisciplinary, mathematics, PRISMA, teaching statistics
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1.INTRODUCTION

The concept of statistical literacy, which began to develop quite small and technically in the
late 1970s, was expanded by Statistical Association (ASA) in the late 1990s [1]. The concept
of statistical literacy was originally used to describe the information people need to
technically understand statistics and make decisions based on analysis of data. This aspect of
the concept was measured using statistics in daily life. However, only the technical aspects of
the concept were considered with these measurements. Afterward, the broad definition of the
concept was expressed as ‘‘statistical literacy is the ability to understand and critically
evaluate statistical results that permeate our daily lives — coupled with the ability to
appreciate the contributions that statistical thinking can make in public and private,
professional and personal decisions” by ASA.

In recent years, statistical literacy has grown in importance. Statistics, which we encounter
even in the most ordinary issues in daily life, are one of the most feared and regarded as too
difficult to comprehend by societies [2]. One of the primary reasons for this could be the
simple and direct transmission of statistical information without adequate communication
with the students. Students cannot understand and interpret statistical knowledge in this
situation because the information is given directly to them, and they are not permitted to
interpret that knowledge [2]. Changing students' attitudes toward statistics and increasing their
statistical literacy; practices involving statistics concepts and processes.

The capacity to critically assess and apply statistics in daily life is known as statistical
literacy. These skills include arranging data, making and displaying tables, and analyzing
various data visualizations [3]. Data literacy is defined in the paper "Beyond Data Literacy,"
which was released in September 2015, as the capacity to read data, work with data, analyze
data, and discuss data. According to this paper, data literacy interacts with statistical literacy
and consists of a combination of the technical, critical, mathematical, and conceptual skills
that serve as the foundation for statistical literacy.

The recognition of the importance of statistics in daily life, as well as the relationship between
statistical literacy, has focused attention on mathematics curricula and program developers [4]
[5][6]. Statistics are taught in schools for three important reasons: (1) Statistics is useful in
everyday life, (2) it is a tool used in other disciplines, and (3) it is essential in the development
of critical thinking [5]. For these reasons, some communities frequently emphasize statistics'
specific role in mathematics curricula and make special recommendations on statistical
education [7] [8].

Six important recommendations are made for school statistics courses in the Guidelines for
Assessment and Instruction in Statistics Education (GAISE) [9] study. The development of
statistical thinking and statistical literacy should be emphasized more in the classroom, real
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data should be used, conceptual understanding should be valued above procedural knowledge,
active learning techniques should be used, technology should be used to develop data analysis
and conceptual understanding, and assessments that measure and improve student learning
should be combined [10]. Only the first of the six suggestions from the original GAISE [11].
study have been changed, adding two new emphases in the GAISE II report [12]. These
skills—statistics, problem-solving, and decision-making—should be taught to students as part
of the research process, and they should have opportunities to practice multivariate thinking.
The GAISE II [12] report retains the characteristics of the GAISE I report and includes the
new skills needed to make sense of data today.

In consistency with the GAISE report, interdisciplinary interaction is emphasized as one of
the important elements in the teaching process in mathematics curricula designed and used by
many countries, including Turkey [13]. Interdisciplinary connections stand for a variety of
intelligences and approaches to offering various solutions to the world's complicated
problems. By combining several subjects, such as art, math, science, and social studies, it
improves students' abstract thinking, cognitive growth, problem-solving abilities, and
creativity [14]. Students may see and learn about the connections between each discipline and
the real world thanks to the interdisciplinary approach. Additionally, it enables individuals to
acquire the knowledge and abilities required to adapt to cultures that are continually
undergoing cultural, economic, and technological change. These abilities enable students to
think critically and solve problems creatively [15]. Thus, curriculum documents in all
disciplines refer to some competencies that students will need at the national and international
levels in their personal, social, academic, and work lives [13]. Furthermore, research studies
in various disciplines revealed an increase in students' academic achievement as a result of
interdisciplinary interactions in teaching [16].

However, it is difficult to go beyond transferring these learning outcomes to students with a
teaching approach that focuses solely on the learning outcomes defined in the mathematics
curriculum. Concrete examples of teaching materials relating to the use of interdisciplinary
connections are required instead. Interdisciplinary connections and connections to daily life to
statistics can be built in this context by relating statistics content to content in other disciplines
such as social studies, science, technology, physical education, and arts. The interdisciplinary
analysis of statistics concepts will connect two seemingly independent disciplines while also
increasing the time allocated for teaching the topic, improving students' daily lives and
mathematical connections. Tasks that are designed to promote students' learning of statistics
concepts related to real-life situations and integrated with concepts to be learned in other
disciplines.

A. The Rationale for the study

Students must define, organize, and interpret numerical data obtained in various contexts
within statistics [10]. The GAISE identifies statistics teaching, the development of statistical
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thinking, as well as the emphasis on statistical literacy, the use of active learning methods
within the classroom, the encouragement of technology use, the analysis of student learning,
the availability of conceptual understanding rather than operational knowledge, and the use of
real data as methods to develop statistical literacy [10]. Interdisciplinary teaching can be used
as a foundation for providing context for students while dealing with real data and having
conceptual understanding. Interdisciplinary teaching is a method of assisting students in
combining and integrating knowledge from various fields, as well as enabling students to
think by synthesizing and analyzing them through concepts [17].

In recent years, the concept of statistical literacy has expanded beyond its traditional
boundaries to include interdisciplinary perspectives and a variety of educational approaches.
This expansion has led to increased research interest in how statistical literacy is developed,
particularly at the secondary school level, where basic skills are developed. In this context, it
is critical to examine the literature for research-based examples of interdisciplinary
connections, identify activities, and identify effective methods for developing statistical
literacy. In conclusion, this study formulates five primary research questions that
systematically examine various dimensions of statistical literacy development among
secondary school students. Tracking the publication years of studies on statistical literacy
provides valuable insights into the evolution of research interest over time. By mapping trends
in publication frequency, this study aims to identify periods of increased academic focus and
potential gaps where further research is needed. Understanding these trends can help
contextualize the evolution of statistical literacy research and reveal how changes in
educational policy, technological advances, and pedagogical innovations have impacted the
field.

RQ1: What years have manuscripts in this field been published?

Methodological approaches in statistical literacy research are essential for uncovering
effective teaching practices and understanding the cognitive and pedagogical mechanisms that
shape student learning. This question seeks to examine the variety of sample types, ranging
from individual case studies to large-scale experimental designs, and the variety of data
collection tools used, such as surveys, interviews, and performance assessments. In addition,
methods such as qualitative and quantitative research and mixed methods approaches help
identify key factors that influence learning outcomes and the relationships between different
learning methods.

RQ2: What sample types, data collection tools and data analysis methods, were used to
identify the most effective practices for improving statistical literacy in middle school
students?

Developing statistical literacy in secondary school students presents several pedagogical and
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conceptual challenges. This research question aims to explore challenges identified in the
literature, including students’ misconceptions about statistical concepts, limitations in
curriculum design, and varying effectiveness of teaching methods. Additionally, the study
examines the role of interdisciplinary connections in overcoming these challenges and
evaluates how integrating statistics with subjects such as science, social studies, and
economics can increase student understanding and engagement.

Q3: What are the main issues identified in the literature review concerning the development
of statistical literacy in middle school students and the use of interdisciplinary connections?

Interdisciplinary approaches offer a promising avenue for improving statistical literacy by
addressing statistical concepts in real-world contexts. This research question aims to
investigate specific strategies used to integrate statistics across disciplines, such as project-
based learning, inquiry-based activities, and technology-enhanced instruction. By identifying
successful interdisciplinary approaches, the study provides a framework for developing
curricula that integrate statistical literacy with broader educational goals.

Q4: What methods have been used to support the statistical literacy of middle school students
with interdisciplinary approaches?

Effective pedagogical strategies are essential to promoting statistical literacy and enabling
students to develop the critical thinking skills necessary for data-driven decision making. This
research question synthesizes evidence on instructional methods including active learning
techniques, real and easily accessible data in classroom tasks, and assessment-focused
feedback mechanisms. By evaluating the effectiveness of these strategies, the study aims to
provide actionable recommendations for educators seeking to improve statistical literacy
instruction in secondary school settings.

Q5: What are the methods and strategies that are useful in the development of statistical
literacy?

By addressing these research questions, this study contributes to a deeper understanding of
how statistical literacy is conceptualized, taught, and assessed within an interdisciplinary
framework. The findings aim to inform educators, curriculum designers, and policy makers
about best practices and emerging trends in statistical literacy education and ultimately
support the development of more effective teaching methodologies.
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2.GENERAL PROPERTIES OF METHOD

In this study, a systematic review with PRISMA protocol was used to determine the results
related to the improvement of the statistical literacy of middle school students, which
interdisciplinary methods are used for statistical literacy and to determine what kind of studies
have been done in this field. A systematic review is a determination of which studies will be
included in the compilation using various inclusion and elimination criteria of all studies on a
particular subject and the synthesis of the identified studies according to the research question
[18][19]. The purpose of the systematic review is to synthesize the studies on a particular
subject, reveal the general trend on that subject, and identify the deficiencies and possible
studies on the subject [18][20].

The PRISMA protocol was developed by reviewers, clinicians, medical editors, and
methodologists in 2005 for a more clear and complete reporting of systematic reviews and
consists of a 27-item checklist and a 4-step flowchart [21]. PRISMA contributes to the quality
and reproducibility of the process in studies such as systematic review and meta-analysis
[22][23]. PRISMA offers three benefits: 1) it describes the research questions included in the
systematic review, 2) it identifies inclusion and exclusion criteria, and 3) it allows for the
investigation of a large database of literature.

Review and inclusion criteria

In this study, various combinations of keywords such as "statistical literacy, data literacy,
middle school, material, method, strategy, process/steps" were used to search in Turkish and
English in ERIC, Web of Science (WOS), and ULAKBIM (national database) databases to
determine the methods used to improve the statistical literacy of middle school students. To
reach more studies, studies after 2010 were considered, as well as relevant studies, practices,
and compilations published in national and international journals. Only studies in which
participants were middle school students were included.

Elimination criteria

This study included studies with English and Turkish texts; studies written in other languages
were excluded. Selected articles are only included in WOS, ERIC and ULAKBIM databases.
Articles outside of these databases are not included. The study excluded case reports, case
texts, conference papers, reviews, theses, and reprinted publications. In order to develop more
comprehensive research, the word interdisciplinary was not included in the inclusion criteria.
However, the articles determined according to the inclusion criteria were not included in the
study if they do not include an interdisciplinary approach.
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Selection process of the studies

Two of the researchers worked independently to identify and select the studies. As a result,
the same selection procedure was followed twice. When there was a disagreement among the
researchers, the expert opinion was sought. 1128 studies were obtained from ERIC (n=139),
WOS (n=827) and ULAKBIM (n=162) electronic databases in accordance with the keywords
determined in the first step of the study conducted in accordance with the PRISMA checklist.
In the second step, 69 studies were determined according to the study title and abstract
according to the inclusion and exclusion criteria, and 29 duplicates studies were excluded. In
the third step, 20 articles were screened in detail according to inclusion and exclusion criteria.
In the fourth step, the full text of the remaining 20 articles was examined in detail in
accordance with the determined criteria and research questions (The list of articles included in
the study is given in the Appendix). The applied PRISMA process is summarized in the flow

chart in Figure 1.
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Figure 1. The selection process of the articles
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20 articles included in the study comprise different types including practitioner papers. The
practitioner papers are often produced for educators working in the field by educators or
occasionally by researchers. Real classroom experiences and observations are highlighted in
practitioner articles, which also primarily cover useful teaching advice and classroom ideas.

Coding and analysis of data

The researchers thoroughly examined all the studies included in the study, and some
categories were established to analyze the subject. These were determined to be "year of the
study, research method, grade level, data collection tools, data analysis method,
interdisciplinary concept in statistical literacy and methods and strategies used in developing
statistical literacy." The researchers then determined the codes for each study independently
based on these pre-determined categories. The coding was done independently by two
researchers, and the validity and reliability of the coding were also examined. The percentage
of agreement among researchers was calculated as 0.91 (Reliability = Consensus /
(Agreement + Disagreement) x 100). The Excel program was used for all coding and analysis.
As a result, for analysis and interpretation, the frequency percentage values of the data
belonging to each category were calculated, and a graphical method was used to better
understand and interpret some results.

3.APPLICATIONS

Using the selection criteria, a total of 20 research articles that fit the research framework were
analyzed in two main sections: research and teaching elements. In order to answer the
research question of when the studies included in the study were conducted, 20 studies were
examined in terms of publication year. The distribution of articles by year is shown in Table 1
and Figure 2.

Table 1. Distribution of years of studies within the scope of the research

Year n % Year n %
2010 0 0 2016 1 5
2011 2 10 2017 1 5
2012 1 5 2018 1 5
2013 3 15 2019 0 0
2014 3 15 2020 1 5
2015 1 5 2021 4 20

2022 2 10
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Figure 2. Number of articles reviewed over time

When the publication years of the articles are considered, it is discovered that every year
except 2010 and 2019, there is at least one article published on this subject, though it is higher
in some years. The year with the most articles appears to be 2021 (n = 4).

The study also looked into the research method or approach used in the 20 articles that were
the subject of the study. Looking at all 20 studies, it is clear that some use a quantitative
approach while others use a qualitative approach. Table 2 describes the various types of
studies.

Table 2. Distribution of research methods/approaches used in studies within the scope of the

research
Method n % Method n %
Case study 4 20 Experimental research 6 30
Design-based/developmental
Practitioner paper 4 20 research 3 15
Mixed method research 3 15

When Table 2 is examined, it is clear that the selected studies use a variety of research
designs. While case studies are common in qualitative research, experimental studies are more
common in quantitative research. Furthermore, roughly one-fifth of the studies (n=4) were
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designed as practitioner papers. The sample types were examined in terms of grade level to
answer the fourth research question. Table 3 depicts the situation for this analysis.

Table 3. Distribution of sample types used in studies within the scope of the research

Grade Level n %
4-6 1 5

5-8 3 15

6-8 3 15

7 7 35

8 4 20
Middle years 1 5
Upper elementary 1 5

Table 3 shows that sample types are defined differently in the articles reviewed. Some studies
include students from multiple grade levels, while others concentrate on a single grade level.
Although some grade levels overlapped with others in the table because the definition of
grade level varies by country, how grade level was defined in the study is provided here.
When the studies are analyzed by grade level, it is discovered that the majority of them are in
the seventh grade (n=6). The next grade level (n=4) is eighth grade. Studies focusing on a
single level outnumber studies focusing on multiple levels, accounting for approximately 55
percent of all studies.

When the data collection tools used in the 20 articles studied are examined, it is discovered
that different data collection tools were used depending on the study's research method. Table
4 presents the distribution of data collection tools used in studies within the scope of the
research.

Table 4. Distribution of data collection tools used in studies within the scope of the research

n % n %
Questionnaire 2 6.8 Interview 7 241
Test 6 20.7 Artifacts/written
documents 13 448

Observation 1 34
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Table 4 shows that multiple data collection tools were used in some of the studies. As a result,
there are more data collection tools than studies. Artifacts and written documents are the most
preferred data collection tools in qualitative studies, mixed-method research, developmental
research, and case studies (n=13). In other words, artifacts/written documents made up
roughly half of the total data collection tools used in the studies. After artifacts and written
documents, interviews are the most used data collection tool in studies with a qualitative
dimension (n=7). Tests are mostly used as data collection tools for quantitative dimension
(n=06).

When the studies' data analysis methods are examined, it is discovered that a variety of
methods are used. Table 5 shows the data analysis methods used in the studies.

Table 5. Distribution of data analysis methods used in studies within the scope of the research

n % n %
Document Chi-square 1 58
analysis/ T-test 2 118
Content 41.1 Anova 2118
analysis
Ancova 1 5.8
Frequency 17.6 Manova 1 5.8
3
table

The data analysis methods used in the studies vary, as shown in Table 5. However, some
studies use separate analysis methods for quantitative and qualitative data, and content
analysis is the most used data analysis method (41.1%). The t-test is preferred over other
analysis methods for quantitative analysis, but the percentage is not as high. Because data
analysis and presentation take the form of student work and process explanation, practical
articles are not included in this section.

The findings to this point are for analyzing the studies investigated in the research dimension.
The details of the findings discussed in the studies are included in the second part of the
findings. Table 6 shows the analysis of articles in terms of the concept of interdisciplinary
connections.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye



Table 6. Analysis of Articles in Terms of the Concept of Interdisciplinary Connections

Article How did the How did the Scope/concept Instructional
(Authors, author(s) handle author(s) use it? and procedures  process (if any)
publication interdisciplinary focused
year) connections?
Akar, N., & Mentioning the Including own  Graphs None
Ovez, F. T.D. importance of views or the (Examining how
(2018) concepts in views of other  this concept is

mathematics in authors in the included in

other disciplines literature on this course materials)

and in daily life subject
Blagdanic, C., Presenting an Using activities  Creating and Implementing
& Chinnappan, example of that require interpreting activities to
M. (2013) practice to learning graphs  graphs with real- experience the

Cakiroglu, U.,
& Giler, M.
(2021)

Cakmak, Z. T.
& Durmus, S.
(2015)

Conti, K. C.,
& De
Carvalho, D.
L. (2014)

improve statistical
literacy

Using
gamification as an
interdisciplinary
concept

Mentioning the
importance of
concepts in
mathematics in
other disciplines
and in daily life

Taking a
discipline as a
basis and
supporting it with
another discipline
(Using
Technology in
Mathematics)

by using real-
life situations as
a context

Using
gamification as
atool in
statistics
teaching

Revealing the
concepts and
reasons that are
difficult to learn
about statistics
and probability

Making use of
technology in
activities in the
project carried
out to improve
statistical
literacy

life contexts

Line graph, pie
graph, median,
mode

All concepts
related to
probability and
statistics in the
national
curriculum in
grades 6-8

Formulating
research
questions,
creating tables

process

Teaching the
concepts of
statistics with
gamification

None

Conducting three
activities
(preparing a
questionnaire,
tabulating the
data and
presenting it as a
poster) to
improve
statistical literacy
as part of a
project
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Giler, H. K., Mentioning the Including own  Reading and Implementation
& Kabar, M. importance of views or the interpreting of activities for
G. D. (2021) concepts in views of other  graphs reading and
mathematics in authors in the interpreting
other disciplines literature on this graphs
subject
Giirbiiz, R., Mentioning the Including own  Line graph, Using error-
Yildirim, 1., &  importance of views or the mean, median, based activities
Dogan, M. F.  concepts in views of other ~ and mod in teaching
(2021) mathematics in authors in the
other disciplines literature on this
and in daily life subject
Koparan, T., & Selecting topics in Conducting the = Generating Project-based
Giiven, B. away to include  project around  research learning process
(2014) interdisciplinary  an questions, data
themes during the interdisciplinary collection and
project process theme data analysis
Marti, E., Not mentioning  Not mentioning Creating binary Activities
Garcia-Mila, the the tables requiring asking
M., Gabucio, F., interdisciplinary interdisciplinary students to create
& connection connection a table for the
Konstantinidou, given situation
K. (2011)
Mota, A. I, Taking a Using Tinker Data Activities
Oliveira, H., &  discipline as a plots software interpretation including
Henriques, A. basis and in teaching analyzing and
(2016) supporting it predicting the
with another real data by using
discipline Tinker plots
(Using
Technology in
Mathematics)
Ozmen, Z. M.,  Not mentioning Not mentioning Reading, None
Guven, B., & the the interpreting,
Kurak, Y. interdisciplinary interdisciplinary creating,
(2020) connection connection comparing and
evaluating graphs
(Descriptive
analysis of
students'
solutions)

200
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Selmer, S. J.,
Bolyard, J. J., &
Rye, J. A.
(2011)

Selmer, S. J.,
Rye, J. A.,
Malone, E.,
Fernandez, D.,
& Trebino, K.
(2014)

Sharma, S.
(2013)

Swan, K.,
Vahey, P., van't
Hooft, M.,
Kratcoski, A.,
Rafanan, K.,
Stanford, T., &
Cook, D. (2013)

Connecting
mathematics
and another
discipline
(Science)

Connecting
mathematics
and another
discipline
(Science)

Building on one
discipline and
supplementing
it with another
(use of
strategies
related to
Reading and
writing in
Mathematics)

Integration of
Social Studies,
Science,
Mathematics
and Language
teaching
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Using the
science theme
as a context in
the process of
activities to
develop
statistical
literacy

Using the
science theme
as a context in
the process of
activities within
project process
to develop
statistical
literacy

Associating
reading and
writing
strategies with
the statistics
teaching
process

Consecutive
teaching
processes of
four disciplines
within the
framework of a
common theme

Statistical
literacy cycle
consisting of
creating research
questions,
collecting data,
presenting and
interpreting data

Statistical
literacy cycle
consisting of
creating research
questions,
collecting data,
presenting and
interpreting data

Data evaluation

Asking
appropriate
questions, using
appropriate data
representation
methods, using
data processing
methods, making
data-based
comments and
explanations

Teaching process
consisting of a
series of
activities in the
context of
nutrition theme

Project-based
learning process
including
gardening and
local product
market activities
at school

Performing a
series of
activities that
require students
to evaluate
statistical
discoveries made
by others in
terms of data
collection
method,
measurement
tool, and validity
of findings

Teaching process
with the
Preparation for
the Future
Learning
Framework
(interdisciplinary
unit processing
with a problem-
based approach)
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202

Utomo, D. P.
(2021)

Vahey, P.,
Rafanan, K.,
Patton, C.,
Swan, K., van’t
Hooft, M.,
Kratcoski, A., &
Stanford, T.
(2012)

Yanik, H. B.,
Ozdemir, G., &
Eryilmaz-
Cevirgen, A.
(2017)

Biischer, C.
(2022)

Morris,B.J.,
Masnick, A. M.,
& Was, C. A.
(2022)

Mentioning the
importance of
concepts in
mathematics in
other disciplines
and in daily life

Integration of
Social Studies,
Science,
Mathematics
and Language
teaching

Mentioning the
importance of
concepts in
mathematics in
other disciplines
and in daily life
Presenting an
example of
practice to
improve
statistical
literacy

Connecting
mathematics
and another
discipline
(Sports)

Including own
views or the
views of other
authors in the
literature on this
subject

Consecutive
teaching
processes of
four disciplines
within the
framework of a
common theme

Including own
views or the
views of other
authors in the
literature on this
subject

Using activities
that require the
use of statistical
literacy

Using activities
that require the

use of statistical
literacy

Understanding
the problem,
presenting the
data, interpreting
the data
(Examining
student solutions
to TIMSS
problems)

Asking
appropriate
questions, using
appropriate data
representation
methods, using
data processing
methods, making
data-based
comments and
explanations

Data processing
(Examining how
data processing is
included in
activities in
textbooks)

Basic statistical
concepts (i.e.
mean)

Basic statistical
concepts (i.e.
average)

None

Teaching process
with the
Preparation for
the Future
Learning
Framework
(interdisciplinary
unit processing
with a problem-
based approach)

None

Online course
structure

Computerized
testing

When the studies are examined in terms of how they handle multidisciplinary interaction, it is

seen that there are several approaches. These include highlighting the value of connections,
successive teaching across disciplines, performing projects within the context of a common
theme including several disciplines, and employing other disciplines to support it based on
mathematics. Interdisciplinary connections occurred in the studies in a variety of ways,

including by conducting common lesson processes, taking it into account during project
planning, carrying out classroom activities, and including it in the literature review section.
Some of the studies covered the statistical literacy cycle as a whole, while others focused on a
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particular subject. In studies on a particular topic, graphics is the most popular subject.
Activities predominated in terms of instructional procedures, and project-based learning is
frequently preferred.

The studies analyzed in the scope of this study underlined some methods and strategies that
worked on the development of statistical literacy. These practices are provided in Table 7.

Table 7. Methods and strategies found useful on the development of statistical literacy

# Methods and Strategies
1 Using real life activities enriched with gamification elements
2 Using relevant, interesting, familiar, attractive and authentic contexts
3 Engaging students in the complex and demanding tasks
4 Connecting the statistical concepts with other concepts in mathematics
5 Giving emphasis to interpretation of the data
6 Incorporating real experiences into learning process
7 Using project-based learning
8 Providing opportunity to communicate the data in a detailed manner
9 Using erroneous examples
10 Using cooperative learning activities
11 Using student centered teaching principles
12 Using real and readily available data in classroom tasks
13 Using technology to perform tasks easily and faster
14 Providing scaffolding support
4.CONCLUSIONS

The goal of this study is to present an analysis of studies dealing with statistical literacy and
incorporating interdisciplinary interaction. In order to achieve this goal, the studies were
scanned using specific keywords, and 20 articles that fit the purpose of the study were
examined in terms of the year they were published, the grade level, the research design, the
type of data collection tools used, data analysis methods, and the results they discussed.

This study discovered that studies were conducted almost every year, with more studies
conducted in the previous year. Statistical literacy is a process that has received attention
[4][10][5][6]. Thus, increase in the number of studies focusing on statistical literacy is
expected. Despite the interdisciplinary emphasis discussed in this study, studies on statistical
literacy in the article scanning process have become more common in recent years, regardless
of this emphasis.
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When it comes to the research design preferred in the studies, case studies are preferred more
in qualitative studies, while experimental studies are preferred more in quantitative studies.
Because case studies in qualitative studies are a frequently preferred method in various fields
of education to analyze the current situation [24] the fact that they are also preferred in the
studies under consideration is a situation that overlaps with the general preferences. Likewise,
experimental studies that deal with the effect appear to be preferred at this point. Practitioner
papers make up a significant portion of the 20 studies. Four papers, or about a quarter of the
total, are practitioner papers. It is critical that such articles present evidence-based educational
practices and findings particularly useful for practitioners such as teachers and teacher
candidates [25].

When we look at the grade levels where the studies are conducted, we can conclude that
studies are conducted at various levels. The number of studies focusing on a single grade
level, on the other hand, is greater than the number of studies focusing on more than one
grade level. Different sample selection strategies may have been preferred based on the
different nature of the studies [26].

When the findings about the data collection tools are examined, we see that the studies use
more than one data collection tool. From this perspective, it is possible to state that more than
one source [26] was used to improve the validity and reliability of the data in the studies.
When the studies are evaluated in terms of data analysis, it is discovered that the analysis
method varies depending on the research questions and data type, and the most prominent
data analysis methods chosen in accordance with the nature of the studies are t-test and
content analysis. This is not surprising result since these are among the common approaches
[27][28] in educational research.

When examining how the studies use the interdisciplinary approach, it is seen that they
generally combine statistical literacy with different approaches such as mathematical
concepts, social sciences, and daily life. It has been discovered that the authors generally take
the interdisciplinary approach with the project-based approach, combining with technology,
their own views and those of other authors in the literature. While most of the studies dealing
with statistical literacy and interdisciplinary approach focused on creating and interpreting
graphs or tables, few studies focused on concepts such as mode, median, and mean. In
teaching these concepts with interdisciplinary approaches, it is seen that project-based
approach, teaching with activity and teaching methods with gamification are frequently used.
These findings are consistent with many different studies in the literature [10] [29]. Besides,
several studies underlined the importance of student centeredness in learning by strategies
such as using collaborative learning environments. Thus, statistical literacy is said to be
developed by means of activity enriched learning environments as indicated in other studies
[10].

In conclusion, in studies on statistical literacy, it has been determined that themes such as the
use of real-life data, project-based learning, student-centered teaching, associating statistical
concepts with other concepts in mathematics have emerged. From the findings, it can be said
that the use of real-life data to explain statistical concepts and show the application of
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statistics is related to the types of student learning experience. In addition, it can be said that
the use of interdisciplinary approaches such as social sciences, natural sciences or
mathematical sciences in statistics teaching supports the approaches most commonly used in
statistics teaching in schools (using real-life data, project-based learning, etc.).

Limitations and future research directions

Although statistical literacy has gained more attention in recent years than in previous years,
the number of studies in this field is quite limited, particularly when viewed in the context of
interdisciplinary interaction. In this context, it is critical to consider studies aimed at
improving statistical literacy at various grade levels, different conceptual focuses, or
procedural processes, as well as designing and implementing research processes. This study
could handle 20 studies that were appropriate for the purpose. A greater number of studies in
this area in the future may allow for the collection of different types of data.

Another issue was the lack of longitudinal studies in the small sample size. Because Statistical
Literacy development, like other literacy development, is a long-term process, longitudinal
studies are considered important in terms of understanding the various stages and tools that
are beneficial in the process. In this context, data from other studies and longitudinal studies
can be included. Although a limited number of studies were examined here, the data from
those studies provide a picture of the processes, strategies, and tools for improving statistical
literacy through interdisciplinary interactions. With an increase in the number of practitioner
papers, experimental studies, qualitative studies, and longitudinal studies containing such
practices, a useful toolbox for researchers and practitioners would be created.
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Abstract

In this paper pseudosymmetric and Ricci pseudosymmetric of a Kenmotsu manifolds
are researched. We have achieved the necessary and sufficient conditions for a Kenmotsu

manifold, Wg-pseudosymmetric, Wg-Ricci pseudosymmetric, Ws-pseudosymmetric and Ws-

Ricci pseudosymmetric. Additionally, some interesting results on Kenmotsu manifolds are

obtained.

Keywords: Kenmotsu Manifold; Pseudosymmetric Manifold; Ricci Pseudosymmetric

Manifold.

1.INTRODUCTION

U.C. De and A. K. Gazi studied pseudo Ricci symmetric manifolds. They obtained a
sufficient condition for a pseudo Ricci symmetric manifold to be a quasi Einsteain manifold.
They proved that in a pseudo Ricci symmetric quasi Einstein manifold the scalar curvature
vanishes and pseudo Ricci symmetric quasi Einstein perfect fluid spacetime has also been

considered [8].

In a Riemannian manifold, the Riemannian curvature tensor is R and for each X,Y €
x(M), if R(X,Y)-R =0, then the manifold is said to be semisymmetric. Similarly, if
R(X,Y) -S = 0, the manifold is called Ricci semisymmetric, if R(X,Y) - P = 0, the manifold
is called projective semisymmetric, R(X,Y)-Z = 0 and the manifold is called concircular
semisymmetric, where S is the Ricci curvature tensor, P is the projective curvature tensor and

7 is the concircular curvature tensor. Studies on the symmetric Riemannian manifolds started
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with Cartan [5]. In the following periods, many authors have studied the curvature tensors of

various manifolds [4, 6, 11, 14, 15, 16].

K. Kenmotsu studied a class of a contact Riemannian manifold and call them
Kenmotsu manifold [13]. He studied that if Kenmotsu manifold satisfies the condition
R(X,Y).R = 0, then the manifold is of negative curvature —1, where R is the Riemannian
curvature tensor of type (1,3) and R(X,Y) denotes the derivation of the tensor algebra at each
point of the tangent space. The properties of Kenmotsu manifolds have been studied by

several authors [7, 9, 20, 22, 23].

In this article, we have researched the pseudosymmetric and Ricci pseudosymmetric
of Kenmotsu manifold. For Kenmotsu manifold, Wg pseudosymmetric, Wy Ricci
pseudosymmetric, Wqy pseudosymmetric and Wy Ricci pseudosymmetric cases are considered.

Then some results are obtained and classifications have been made.

2.PRELIMINARIES

Let M be a (2n + 1) —dimensional almost contact metric manifold with an almost
contact metric structure (¢, ¢, 7, g), that is, ¢ is an (1,1) tensor field, ¢ is a vector field, n is a

1-form and the Riemanniann metric g on M satisfy
¢*(X) = =X +n(X)§, n(¢X) =0, 2.1
n§) =1 ¢$=0,1n(¢)=0 (2.2)
forall X,Y € y(M) [17]. Let g be Riemannian metric compatible with (¢, &, n), that is
g(dX, oY) = g(X,Y) —n(X)n(Y), (2.3)
or equivalently,
gX,¢Y) = —g(@X,Y) and g(X,$) =n(X) (2.4)
forall X,Y € y(M) [2]. If in addition to above relation
(Vx@d)Y = —n(Y)pX — g(X, pY)S, (2.5)

and

Vx§ =X —n(X)$, (2.6)
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where V denotes the Riemannian connection of g hold, then M (¢, &, 1, g) is called Kenmotsu

manifold. Kenmotsu manifold becomes a Kenmotsu manifold if

9(X, YY) = dn(X,Y). (2.7)

In a Kenmotsu manifold M, the following relation holds [13, 9]:

(VxmY = g(X,Y) —nX)n(Y), (2.8)
R(X,Y)$ =n(X)Y —n(Y)X, (2.9)
R(EX)Y =n(V)X —g(X,Y)§, (2.10)
S(X,¢) = —2nn(X), (2.11)

Q¢ = —2n¢, (2.12)

where R is the Riemannian curvature tensor and S is Ricci tensor defined by S(X,Y) =

g(QX,Y), where Q is Ricci operator. It yields to
S(pX,9Y) =SX,Y) + 2nn(X)n(Y). (2.13)

Definition 2.1 A Kenmotsu manifold M is said to be an n —Einstein manifold if its

Ricci tensor S of the form
S, Y) = agX,Y) + pn(X)n(¥) (2.14)

for arbitrary vector fields X, Y; where a and 8 are functions on (M?"*1, g). If B = 0, thenn —

Einstein manifold becomes Einstein manifold [3].

On a semi-Riemannian manifold (M, g), for a (0, k) —type tensor field (0, k)-type
tensor field T and (0,2)-type tensor field A, (0, k + 2)-type Tachibana tensor field Q(A4,T) is

defined as
QATYX, Xz, ., Xis X,Y) = =T((X Ny Y)X1, X5, .., Xi)

—T(Xy, X A X, Xay oo Xi) oo =T (X, Xap -, (X Ay VX3,

—T(Xy, Xar .., (X Ay V)Xp), (2.15)
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forall X, X,,..., X, X, Y € y(M), where
XMY)Z =AY, 2)X —A(X,2)Y. (2.16)
forall X,Y,Z € y(M).

3. CHARACTERIZATION OF PSEUDOSYMMETRIC AND RICCI
PSEUDOSYMMETRIC KENMOTSU MANIFOLD

In this section, the case of pseudosymmetry and Ricci pseudosymmetry of Kenmotsu
manifold are investigated. According to Wj curvature tensor, Wy curvature tensor and
concircular curvature tensors, the pseudosymmetrical and Ricci pseudosymmetrical cases of

the Kenmotsu manifold can be given as follows.

Let (M, g) be an (2n + 1)-dimensional Riemannian manifold. Then the Wy curvature
tensor is defined by [19]. Furthermore, Wy the curvature tensor for Riemannian manifold

(M?™*1, g) is given by
Wy(X,V)Z = R(X,V)Z — = [S(Y,Z)X — S(X,Y)Z] 3.1)

for all X,Y,Z € y(M) [19]. If we choose, respectively, X = ¢ and Z = ¢ in (3.1), then we

obtain as follows:
We(§,Y)Z =n(2)Y —n(Y)Z — g(¥,Z)§ — %S(Y, Z)8, (3.2)
Wa(X,Y)E =n(X)Y +-S(X, V)& (3.3)
In addition, we choose Z = £ in (3.2), we obtain as follows:

We(§,Y)E =Y —n(¥)S. (3:4)

Definition 3.1 Let M be Kenmotsu manifold with (2n + 1) —dimensional, R be the

Riemannian curvature tensor of M, S be the Ricci curvature tensor of M.

(1) If the pair R - Wg and Q (g, Wg) are linearly dependent, that is, if a A; function can

be found on the set
M; = {x € M|g(x) # Wg(x)} such that

R.Wg = 1,Q(g, W), (3.5)
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the M manifold is called a Wy pseudosymmetric manifold.

(i1) If the pair R - Wg and Q (S, Wy) are linearly dependent, that is, if a A, function can

be found on the set
M, = {x € M|S(x) # Wg(x)} such that
R.Wg = 2,Q(S, Wy), (3.6)

the M manifold is called a Wg Ricci pseudosymmetric manifold. Particularly, if A; = 0, then

this manifold is said to be semisymmetric [10].

Let us now investigate the cases of Wy pseudosymmetry and Wj Ricci

pseudosymmetry.

Theorem 3.2 If a (2n + 1) —dimensional M Kenmotsu manifold is a Wy

pseudosymmetric manifold, then M is a semisymmetric manifold.

Proof- Let us suppose that Kenmotsu manifold M is a W3 pseudosymmetric manifold.

Then, we can write
(R(X,Y) - We)(Z, U, W) = 1,Q(g, We)(W, U, Z; X, Y), (3.7)

for each X,Y,Z,U,W € x(M). This means that

R(X,Y)Ws(Z, U)W — Wg(R(X,Y)Z, U)W — Wy(Z,R(X, V)U)W

—Ws(Z, )RX, Y)W

=~ {(Ws((X Ay VIW,U)Z + We(W, (X Ay Y)U)Z

+We(W, U)(X A, Y)Z). (3.8)
Here taking X = Z = ¢ and by using (2.9), (2.10) and (2.16) in (3.8), we reach at

nWs(§, U)W)Y — g(¥, We (&, UY)W) — R(Y —n(Y)$, U)W

—We(&,n(U)Y — g(U, Y)W —n(We(§, YIW)U + g(U,R(S, YIW)

= =M{We(g(Y, W)E —n(W)Y,U)S + We(W, g(Y,U)$ —n(U)Y)

W (W, U)(n(Y)$ = Y)} (3.9)
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If we use (3.2), (3.3) and taking W = ¢ in (3.9) and make the necessary abbreviations, then

we have
U =nU)OY =g, U —nU)$)§ — We(Y,U)$ +n(Y)Ws(S,U)E
—N(UWe(§,Y)E = We(§, U)Y +n(Y)Ws(&, U)E
= LU —nU)E) — U +5-SU,Y)E) = nU)(Y —n(¥)E)
—n()(WU —nU)E) — We(E, U)Y}
(3.10)

Taking the inner product with ¢ € y(M) on both sides of (3.10) and make use of (3.2), then

we can infer
MlgU,Y) =n)n(Y)] = 0. (3.11)
On the other hand, we know that from (2.3) and (3.11), we conclude
Ag(@U,¢Y) = 0.
This completes our proof.

Theorem 3.3 If a (2n + 1) —dimensional M Kenmotsu manifold is a Wg Ricci

pseudosymmetric manifold, then M is a semisymmetric manifold.

Proof. Let us assume that Kenmotsu manifold M is a Wg Ricci pseudosymmetric

manifold. This implies that
(R(X,Y) -We)(Z, U, W) = 2,Q(S,We)(W,U,Z; X,Y), (3.12)
foreach X,Y,Z, U, W € y(M), that is,
R(X,Y)Wg(Z, U)W — Wg(R(X,Y)Z, U)W — Wg(Z,R(X,Y) U)W
—We(Z, U)R(X, Y)W
= =L, {Ws((X A YIW,U)Z + Wg(W, (X Ns YIU)Z
+We(W,U)(X Ns Y)Z}. (3.13)

Here, taking X = Z = £ and using (2.9), (2.16) in (3.13), we arrive at
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nWs(§, U)W)Y — g(¥, We (S, UY)W) — We(Y —n(Y)S, U)W

~Ws (&, n(U)Y — g(U, Y)W —n(We (&, YIW)U + g(U, We(S,YIW)

= — 1, {(Wa(S(Y, W)E + 2nn (W)Y, U)E + We(W, S(Y, U)E

+2nn(U)Y)E + 2nWe(W, U) (Y — n(V)E)}. (3.14)
If € is taken of W at (3.14), considering (2.11), (3.2), then we get

nU —nU)EY — g, U —nU)E)$§ — We(Y,U)S +n(Y)We (S, U)E

—N(U)Wg(§,Y)§ — We (S, U)Y +n(Y)Ws(S, U)S

= =X {4 (Y)(U —n(U)$) + 2n(n(Y)U + $S(U, Y)$)

+2nn(U)(Y — n(Y)E) + 2nWe (&, U)Y}. (3.15)

Inner product both sides of (3.15) by & € y(M) and make the necessary adjustments, we

obtain

A2[g(U,Y) =n(U)n(Y)] = 0. (3.16)

Additionally, from (2.3) we reach at

A29(¢U, 9Y) =0,
which proves our assertion.

Let (M, g) be an (2n + 1)-dimensional Riemannian manifold. Then the Wy curvature
tensor is defined by [19]. Furthermore, Wy the curvature tensor for Riemannian manifold

(M?"*+1 g) is given by

Wo(X,Y)Z = R(X,Y)Z + —[S(X,Y)Z — g (¥, Z)QX] (3.17)

for all X,Y,Z € y(M) [19]. If we choose, respectively, X = & and Z = £ in (3.17), then we

obtain as follows:

Wo(§,Y)Z =n(2)Y —n(Y)Z, (3.18)
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Wo(X,Y)§ =n(X)Y —n(¥)X — % (S&X,Y)§ —n()QX). (3.19)
In addition, we choose Z = ¢ in (3.18), we obtain as follows:

Wo(S,Y)$ =Y —n(Y)S. (3.20)

Definition 3.4 Let M be Kenmotsu manifold with (2n + 1) —dimensional, R be the
Riemannian curvature tensor of M, S be the Ricci curvature tensor of M and Wy be the

Wy —curvature tensor.

(1) If the pair R - Wy and Q(g, Ws) are linearly dependent, that is, if a A3 function can

be found on the set
M; = {x € M|g(x) # Wy(x)} such that
R.Wy = 23Q(g, W), (3.21)
the M manifold is called a Wy pseudosymmetric manifold.

(1) If the pair R - Wy and Q (S, Wy) are linearly dependent, that is, if a 4, function can

be found on the set
M, = {x € M|S(x) # Wy(x)} such that
R.Wqy = 2,Q(S, W), (3.22)
the M manifold is called a Wy Ricci pseudosymmetric manifold [10].

Let us now investigate the cases of W, pseudosymmetry and W, Ricci

pseudosymmetry.

Theorem 3.5 If a (2n + 1) —dimensional M Kenmotsu manifold is a Wy

pseudosymmetric manifold, then M is an 1 —FEinstein manifold provided A3 # —1 and A5 # 0.

Proof. Let us suppose that Kenmotsu manifold M is a Wy pseudosymmetric manifold.

Then, we can write
(RIX,Y) -Wo)(Z, U, W) = 23Q(g,We)(W,U,Z; X,Y), (3.23)
foreach X,Y,Z,U, W € y(M). This means that

R(X,Y)Wo(Z, U)W — Wo(R(X,Y)Z, )W — Wo(Z,R(X, V) U)W
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—Wo(Z, U)R(X, Y)W
= —3{(Wo((X Ay VIW,U)Z + Wo(W, (X Ay YIU)Z
+Wo(W, U)(X Ay Y)Z}, (3.24)

that is, in the last equality taking X = Z = £ and using (2.9), (2.10) and (3.18) in (3.24), we

obtain
Wy (S, W)Y — g(¥, Wo (&, UYW) = Wy (Y —n(¥)S, U)W
—Wo(&,n(U)Y — g(U, V)HW —n(Ws (S, IW)HU + g(U, We (S, YIW)
= —A3{Wo(g(Y, W) —n(W)Y,U)S + Wo(W, g(¥, U)S —n(U)Y)
+Wo(W, U)(n(Y)E — Y)}. (3.25)

If we use (3.18), (3.19) and taking W = ¢ in (3.25) and make the necessary abbreviations,

then we have
nU —nU)Y — g, U —=nU)$)§ — We(Y,U)$
TN(VIWo(E, U)S —n(UIWs(E, YIS — Wo (S, U)Y
+n(V)Ws($,U)S

= —A:{2n(Y)(U —n(U)$) — (V)U —n(U)Y — %S(U. Y)¢$

+n(U) ‘j—,f) — @)Y = 1)) — I)U —nU)Y)}. (3.26)

Taking the inner product with & € y(M) on both sides of (3.26) and make use of (3.20), then

we arrive

271./13

2
SW,Y) = 159U Y) = 132 nUn (). (3.27)
This completes our proof.

Corollary 3.6 Let M be a (2n + 1) —dimensional Kenmotsu manifold. If M is a Wo-

semisymmetric manifold, M is an Einstein manifold.
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Corollary 3.7 Let M be a (2n + 1) —dimensional Kenmotsu manifold. If M is a Wq-

pseudosymmetric manifold, M is an Einstein manifold, provided A3 = 0.

Theorem 3.8 If a (2n + 1) —dimensional M Kenmotsu manifold is a Wy Ricci
pseudosymmetric manifold, then M is an 1 —FEinstein manifold, provided 1, # 1 and A, # 0

Proof. Let us assume that Kenmotsu manifold M is a Wy Ricci pseudosymmetric

manifold. This implies that
(R(X,Y) - Wo)(Z, U, W) = 1,Q(S,Wo)(W, U, Z; X,Y), (3.28)

for each X,Y,Z,U,W € x(M), that is,

R(X,V)Wo(Z, U)W — Wo(R(X,Y)Z, U)W — Wo(Z,R(X, )UYW

—Wo(Z, UYR(X, )W

=~ {Wo((X As Y)W, U)Z + Wo(W, (X As Y)U)Z

+Wo(W, U)(X As Y)Z}. (3.29)
Taking X = Z = & and using (2.9), (3.18) in (3.29), we have

n(Ws(§, UYW)Y — g (Y, Wo (S, U)W) — Wo(Y —n(Y)E, U)W

—Wo (&, (W)Y — g(U, Y)W —n(We (S, YIW)U + g(U, Ws(S, YIW)

= — A {Wo(S(Y,W)E + 2nn(W)Y, U)E + We(W,S(Y, U)E

+2nn(U)Y)E + 2nWe(W, U)(Y — n(Y)E)}. (3.30)
If we use (3.18), (3.20) and setting W = ¢ in (3.30), then we get

U =nU)Y —gY, U —nU)E)$§ — Wo(Y,U)$

TN (V)Wo (&, U)E —n(U)Wo(E,Y)E — Wo (S, U)Y

(V)W (E,U)E

= —A{=4nn(Y)(U —n(U)$) + 2n(n(Y)U — n(U)Y

——S(WU, )¢ +n(U)2) + 2n(n(Y)U = n(U)Y)
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+2n(U) (Y = n(¥)E)}. (3.31)
Inner product both sides of (3.31) by £ € y(M), we obtain

2
S(U,Y) = —1_—’;4g(U, Y) +

14—471.
-1,

n(¥)n ().
which proves our assertion.

Corollary 3.9 Let M be a (2n + 1) —dimensional Kenmotsu manifold. If M is a Wo-

semisymmetric manifold, M is an 1 —Einstein manifold.

Corollary 3.10 Let M be a (2n + 1) —dimensional Kenmotsu manifold. If M is a Wy-

pseudosymmetric manifold, M is an Einstein manifold provided 1, = 4n.

4.CONCLUSIONS

In this paper pseudosymmetric and Ricci pseudosymmetric of a Kenmotsu manifolds
are researched. We have achieved the necessary and sufficient conditions for a Kenmotsu

manifold, Wg-pseudosymmetric, Wg-Ricci pseudosymmetric, Ws-pseudosymmetric and Wg-

Ricci pseudosymmetric. Additionally, some interesting results on Kenmotsu manifolds are

obtained.
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Abstract

In this paper, we study a heat conduction problem in a rod that a boundary condition,
which involves a linear combination of dependent variable and its derivative, arises when heat
is lost from the end of the rod due to radiation into the surrounding medium. When we apply
the seperation of variables method to solve the problem, Newton- Raphson method is used to
calculate the eigenvalues of the equations we encounter.

Keywords: Heat equation; Eigenvalue problem; Newton- Raphson method.

1. INTRODUCTION
The heat equation
V2u = a %u,

where a? is a physical constant, arises in problems concerning the temperature distribution in
homogeneous solids, electromagnetic theory, diffusion processes, and the propagation of cur-
rent in transmission lines. A properly-posed problem consists this equation coupled with a
single boundary condition and single initial condition, an example of which is given by

VZu=a"%u, uinR
u=gon JdR
u=f for t=0.
Here, R denotes the domain of the function u, and dR is the boundary of R.

In this work, we study with a one-dimensional model for heat equation. Let us consider
the following heat conduction problem in a rod that a boundary condition, which involves a
linear combination of dependent variable and its derivative, arises when heat is lost from the
end of the rod due to radiation into the surrounding medium:

Uy =a 2u, 0<x<p (1)
u(0,t) = 0,hu(p,t) + u (p,t) =0, t>0 ()
u(x,0) = f(x) 3)
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where a? is a positive constant known as the diffusivity of the material forming the rod and
h > 0. Negative values of h would physically correspond to thermal energy constantly put
into the rod through the right end [1]. Our aim is to solve this problem fora = 1,h =1 and

p=m.

2. GENERAL PROPERTIES OF METHOD

In this paper, we consider a heat equation and we solve it by separating variables. At
that case, we must obtain eigenvalues and eigenfunctions of a eigenvalue problem. For this,
we use Newton-Raphson method.

The Newton-Raphson method is the best-known method of finding roots of a function.
The method is simple and fast. One drawback of this method is that it uses the derivative of
the function as well as the function f(x) itself. Hence, the Newton-Raphson method is usable
only in problems where f(x) can be readily computed [2]. Newton-Raphson method is also
called Newton’s method. Here, f(x) is continuous and differentiable. In this method, the solu-
tion process starts by selecting point x4 as the first estimate of the solution. The second esti-
mate X, is found by drawing the tangent line to f(x) at the point (x4, f(x;)) and determining
the intersection point of the tangent line with the x-axis. The next estimate x5 is the intersec-
tion of the tangent line to f(x) at the point (x,, f(x,)) with the x-axis, and so on. Since the
tangent line of the function f(x) at point x,, intersects the x-axis at point X, 1, the slope here is
written as:

f(Xn) -0

Xn — Xp+1

f'(xn) =

and from this equation, one gains

f(xn)

X =Xy — .
n+1 n f’(Xn)

3. APPLICATIONS

In this section, we solve the problem (1)-(3). Let’s look for a solution for this equation
in the form of u(x,t) = X(x)T(t) by the separation of variables method. If this solution
u(x, t) is substituted into the heat equation:

X"(X)T(t) = a 2XX)T'(v),
that is

X"(x) a~2T'(t) _
Xx) T

From here, the following two equations are obtained:
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1) X"(x) + XX(x) =0,
2) T'(t) + a®AT(t) = 0.

If the first boundary condition u(0,t) = 0 in the problem is applied, X(0)T(t) = 0 is found.
For non- trivial solution T(t) # 0 and X(0) = 0 must be. When the second boundary condi-
tion hu(p,t) + uy(p,t) = 0 is applied in the problem, the equation

hX(p)T(t) + X'(p) + T(t) = T(t){hX(p) + X'(p)} = 0 is found. For non- trivial solution
T(t) # 0 and hX(p) + X'(p) = 0 must be. Thus, the following eigenvalue problem for X(x) is
obtained:

X" (x) + AX(x) = 0, X(0) = 0,hX(p) + X'(p) = 0. 4)

For the sake of brevity, we accepta = 1,h = 1 and p = 1 in (1)-(3). Denoting the nth solu-
tion of sin(km) + kcos(km) = 0 by k,,, the eigenvalues and eigenfunctions of (4) are repre-
sented by

A = k%, ¢, (%) = sin(k,x), n=1,2,3, ... (5)
Returning now to T'(t) + AT(t) = 0, we obtain
T, () = ce® t, n =123, ...
which, combined with (5), gives the formal solution
uxt) = Y%, c,sin (k,x)e kn’t, (6)
For the condition (2), setting t = 0 in (6) yields the relation
u(x,0) = f(x) = Yo, cpsin (kyx), 0 < x < T,
which is a generalized Fourier series. In this case the Fourier coefficients are calculated from
cn = [Pn()I72 f f(x)sin (kyx)dx, n = 1,2,3, ..
where
Ipn(I? = f; sin?(k,x)dx

_ 1 (T[ __sin (anT[))
2 2Kk

_1 _ sin(kpm)cos (kyTr)
T2 (T[ Kn )’
but since sin(k,m) = k,cos (k,m), we have

b ()% = %[’I‘[ —cos?(k,m)],n = 1,2,3, ...
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We remark that k,, is not exactly clear in (5). In this study, we calculate some k,, by

using Newton-Raphson method, so that one writes the solution of the heat equation from (6).

Let us consider the problem (1)-(3) fora = 1,h = 1 and p = . Hence, we have the
following the eigenvalue problem X(x) and the equation for T(t):

X"(x) + AX(x) = 0, X(0) = 0,X(r) + X' (1) = 0, 7)
T'(t) + AT(t) = 0.

Firstly, we note that (7) has a symmetric operator, so the eigenvalues of (7) are real. The solu-

tion of the problem (7) is examined according to the values of the A parameter as follows:
e IfA=0,

the equation is X" = 0 and the characteristic polynomial is r? = 0. The roots of the characte-
ristic polynomial are found r; =r, = 0 and the general solution is X(x) = ¢; + c,x. If the
first boundary condition X(0) = 0 is applied, c; = 0 is obtained; if the second boundary con-
dition X(m) + X'(m) =0 is applied, c,m+c, =c,(1 +m) =0 is obtained. We know

1+ m =+ 0,s0c, =0. That is, the solution X = 0 is obtained. Thus, A is not an eigenvalue.
e IfA=-k*<0,

the equation X" — kX = 0 and the characteristic polynomial is r? — k? = 0. The roots of the
characteristic polynomial are found r; = -k , r, =k and the general solution is
X(x) = ¢, cosh(kx) + c, sinh(kx). If the first boundary condition X(0) = 0 is applied,
c; = 0 is obtained; if the secondary boundary condition X(m) + X'(m) = 0 is applied,
¢, sinh(km) + kc, cosh(km) = c,{sinh(km) + kcosh(km)} = 0 is obtained. Since we want to
obtain a nontrivial solution c, # 0, it should be sinh(km) + kcosh(km) = 0. If k solved from

this equation:

_ sinh(km) tanh (k)
~ cosh(kn) anniLiT).
Here, the graphs of the u = k and u = —tanh (km) functions are drawn, the intersection po-

ints of the two equations are investigated. The graph is as follows:
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Figure 1. Graphs of the functions u = k and u = —tanh (km)

As can be seen from the graph, the only intersection point is zero. But since k # 0, A = —k?

is not eigenvalue.
e IfA=k?®>0,

the equation X" + k2X = 0 and the characteristic polynomial is r? + k? = 0. The roots of the
characteristic polynomial are found r; = —ik,r, =ik and the general solution is
X(x) = ¢; cos(kx) + c, sin(kx). If the first boundary condition X(0) = 0 is applied, ¢c; = 0 is
obtained; if the second boundary condition X(m)+X'(m) =0 is applied,
¢, sin(km) + ke, cos(km) = c,{sin(km) + kcos(km)} = 0 is obtained. Since we want to ob-
tain a nontrivial solution, c, # 0, it should be sin(km) + kcos(km) = 0. The k values that
provide this equation will form the eigenvalues. To find the roots of the equation, that is, the k
values that provide the equation, the Newton- Raphson method is applied. The iteration is

constructed as follows:

Since f(x) = sin(mx) + xcos(mx), f'(x) = mcos(mx) + cos(mx) — xmsin(mx). So from the

_ f(xn)
' (xn) ’

formula x,,1 = X,

sin(mx,) + x, cos(mx,)

Xpp1 = Xp —
LTI cos(Txy,) + cos(Tx,) — X, TUsin(Tx,)’

and so
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X, T cos(Txy) — sin (xy){x, %1 + 1}

Xp41 = :
"ML meos(mx,) + cos(Tx,,) — x,msin (Tx,,)

Let’s determine the starting point for the iteration by using the graphs of the sin(mx) and

—xcos(mx) functions:

Figure 2. Graphs of the functions sin(mx) and —xcos(mx)
Let’s start the iteration with x, = 0.6:
o Ifx, = 0.6,

f(x¢) = sin(0.6m) + 0.6 cos(0.6m) = 0.765646.

0.6m cos(m0.6)—sin (110.6){0.6T+1}
0.6 cos(10.6)+cos(10.6)—0.6sin (10.6)

o Ifx, = = 0.849192,

f(x,) = —0.299404.

o Ifx, = 0.788122,
f(x,) = —0.002319.

e Ifx; = 0.787637,

f(x3) = 0.000001.
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e x4, =0.787637.

Since here x;,i = 3 values repeat and because it is f(x;) = 0.000001, the root of the
sin(x) + xcos(mx) = 0 equation is found as x = 0.787637. Thus A = k? > 0 is the eigen-
value and the first positive eigenvalue A; = (0.787637)? is obtained. Also, substitution this
value k; = 0.787637 into the equation (6), one gives the solution of the heat problem (1)-(3).

Let’s start the iteration with x, = 1.5.
o Ifxy,=15,

f(x¢) = sin(1.5m) + 1.5 cos(1.5m) = —1.000000.

1.5m cos(m1.5)—sin (1.5){1.5T+1}
1.5 cos(m1.5)+cos(m1.5)—1.57tsin (11.5)

o Ifx, = = 1.712207,

f(x,) = 0.272892.

e Ifx, = 1.672007,
f(x,) = 0.002663.

o Ifx; = 1.671606,
f(x3) = 0.000002.

o x,=1671606.

Since here x;,i = 3 values repeat and because it is f(x;) = 0.000002, the root of the
sin(mx) + xcos(mx) = 0 equation is found as x = 1.671606. Thus A = k% > 0 is the eigen-
value and the second positive eigenvalue A, = (1.671606)? is obtained. Also, substitution

this value k, = 1.671606 into the equation (6), one gives the solution of the heat problem
(D-3).

Similarly, A; = —1.671606 and 1, = 2.616214 are calculated.

We note that we also verify these values by using MAXIMA.

4. CONCLUSIONS

In this paper, we consider a heat problem so that when we apply the seperation of vari-
ables method to solve the problem, we see that the eigenvalues are not clear. We use Newton-
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Raphson method to calculate approximation eigenvalues, and we find the first two eigenva-
lues and hence one writes the solution of the heat problem.
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Abstract In this paper, we generalized structure for statistical convergence by the concept
of density functions using sequences of modulus functions (f;) of order p € (0,1]. This
method introduces a new density framework designed specifically for lacunary sequences,
facilitating the definitions of strong (f;)—lacunary summability of order p and (f;)—lacunary
statistical convergence of order u These newly defined concepts serve as a bridge between
traditional convergence and statistical convergence in the context of lacunary sequences,
providing a middle ground that enhances analytical versatility. Furthermore, we establish
inclusion results and investigate the connections between these notions, offering a thorough
exploration of their implications. This study extends the reach of statistical convergence
theory and advances the field by presenting a more generalized analytical approach.

Keywords Lacunary statistical convergence, Lacunary summability, Modulus function,
Weighted density, Difference sequence spaces.
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1. Introduction

The notion of statistical convergence was first introduced by Zygmund [1]. Independently,
Steinhaus [2] and Fast [3] also formulated similar ideas around the same time. Later, Schoen-
berg [4] and many other mathematicians expanded upon and analyzed this concept further.
Statistical convergence, along with several related notions, has been studied in the context of
various types of sequences. After the foundational work on statistical convergence, numerous
perspectives were explored, leading to several generalizations and extensions. Notably, classes
of sequences exhibiting statistical convergence have been developed using functions and se-
quences from specific categories. Additionally, a connection between statistical convergence
and Cesaro summability was identified and rigorously studied. Salat [5] and Fridy [6] showed
that statistical convergence has emerged as an active area of research within summability
theory. The concept of asymptotic (or natural) density serves as a key tool in statistical
convergence. The set of all sequences that are statistically convergent will be denoted by .S,
and the set of sequences that are statistically convergent of order p will be denoted S*. Colak
[7] and Colak and Bektag [8] also conducted studies on this subject. The ideas of lacunary
summability and convergence involving lacunary sequences were first introduced by Fridy and
Orhan (][9] and [10]). The set of all lacunary statistically convergent sequences is denoted by
Sy and the set of sequences that are lacunary statistically convergent of order u is denoted
by Sj. The topics of lacunary statistical convergence, lacunary boundedness of order x, and
strong summability sequences of order p have been extensively studied by Connor [11], Colak
[12], and Sengiil and Et in [13, 14]. In their work, Pehlivan and Fisher [15] introduced the
idea of lacunary strong convergence in Banach spaces, using a sequence of modulus functions.
The modulus function is another concept that is central to our investigation. The concept
of the modulus was first introduced by Nakano [16] and later, Ruckle [17] established new
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sequence spaces using a modulus function f, which were then applied in numerous studies
(see [18, 19, 20, 21]). Altering the definition of the density function is one approach used to
distinguish statistical convergence. Various generalizations of the concept of asymptotic den-
sity have been investigated. One such generalization is the density f introduced by Aizpuru
et al. [22]: The f-density of a set A C N is defined by

Sk <nike A))
R

if the limit exists, where f is an unbounded modulus functions. Erdal and Bektag [23] defined
strongly F#—lacunary summable and F*—lacunary statistically convergent. Kizmaz [24]
introduced difference sequence spaces .Difference sequence spaces are a class of sequence
spaces studied in functional analysis, particularly within the theory of sequence spaces and
summability. These spaces arise by considering sequences whose differences (typically first-
order or higher-order) belong to a certain classical sequence space like £, c and ¢g. After that
Et and Colak [25] generalized these spaces. Generalized difference sequence spaces extend
the concept of ordinary difference sequence spaces by applying more flexible or higher-order
difference operators often involving weights, matrices, or generalized difference operators or
even using lacunary sequences, Orlicz functions, or modulus functions.

2. Main Results

For each 1 € R such that p > 1 lacunary statistical convergence is not properly defined
(see [13], [14]). Therefore, in the remainder of this paper, we focus on the case where p € (0, 1.
We introduce a slight extension of strongly lacunary summability of order u by employing a
sequence of modulus functions. Based on this definition, inclusion relationships are provided
under specific conditions. We introduced a new concept of lacunary statistical convergence
of order p by using a sequence of modulus functions. By some given inclusion theorems, we
establish some relations between lacunary summability and lacunary statistical convergence
under certain conditions.

Let F' = (f;) be a sequence of modulus functions, § = (¢,) be a lacunary sequence and
w € (0,1] throughout the article.

Definition 2.1. The sequence ((;) is strongly F*(A™)—lacunary summable to some L € C
provided that

ti o 3 i(1A™G — L) = 0.

r—00 .
The set of all F*(A™)—lacunary summable sequences is denoted by Nj'(A™, F).

It is important to note that in this definition, the modulus functions fi do not need to
be unbounded.

Remark 2.2.
i) If we take =1, m =0 and f;(¢) = ¢ for all t € N, then NJ(A™, F) = N.
ii) If we take m = 0 and f;(¢) = ¢ for all t € N, then N)(A™, F) = Nj.

vE[\M 9™ International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye




iii) If we take p =1, m =0 and fy = f for all t € N, then N}'(A™, F) = Ny(f).

In the following theorems and corollaries, supremum and infimum will be taken over all
u € (0,00) and t € N.

Theorem 2.3. For pu; < us we have:

i) Tf supy, 224 < oo, then Nj(A™, G) € Nj*(A™, F).

ii) If inf, ;244 > 0, then N (A™, F) € Nj*(A™,G).

iit) If 0 <inf, 21 <sup, L1 < oo, then Nj*(A™, F) = Nj*(A™,G).

Proof i) Let ¢ € Nf*(A™ G). If p ZSupu,tQ% < o0, then 0 < % < p and hence
fr(u) < pgi(u) for all t € N and for any u € RT U {0}. Since 0 < pu1 < pg < 1, we obtain

2 Y RIATG 1) £ 1 S RIATG ~ 1) < 7 S panlIATG — 1),
tel, tel, tel,
If we take limit as r — oo, we have ¢ € Nj* (A™, F).
i) If infuﬂgggzg > 0, then g¢(u) < %ft(u) for every u € R U {O}and for all ¢ € N. Thus,
the rest of the proof is exactly similar to (i).
iii) is seen from (i) and (iii).

Corollary 2.4. For F = (f;) and G = (g), if i1 < po, then N)* (A™, F) C N)*(A™, F).

Corollary 2.5. For F = (f;), G = (¢;) and p, if supu,tgzgzg < o0, then N§(A™ G) C
Ny (A™, F).

Corollary 2.6. For F = (f;) and p1 < ua, the followings hold:
i) If sup, 4 < oo, then Ni* € NI (A™, F).
iii) If inf, 2449 > 0, then N} (A™, F) C Ni2.

Corollary 2.7. For F' = (f;) and pu <po< ~, the followings hold:

i) If there exists a modulus function f such that f; < f for every t € N, then N} (A™, f) C
Ny2(A™, F).

ii) If there exists a modulus function f such that g < f; for every t € N, then N} (A™, F) C
Ny (A™, g).

iii) If there exists a modulus function f and g such that g < f; < f for every t € N, then
NYH(A™, f) € N2 (A™, F) C NJ(A™, g).

Definition 2.8[23] The density of A C N* of order u € (0,1] for unbounded modulus
functions F' = (f;) is denified by

o hftsrite A))
o) =l T

whenever the limit exists.

Here if p = 1 and f;(¢) = ¢ for all ¢ € N, then we have the natural density (see [3]).
If p € (0,1] and f;(¢) = ¢ for all t € N, then we have the p-density (see [7]).If u = 1 and
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ft(Q) = f(C) for all t € N and for f € M, then we have the f-density (see [20]). If u € (0, 1]
and f;(¢) = f(¢) for all t € N and for f € M, then we have the f,-density (see[26]).

Definition 2.9. The sequence ((;) is generalized F),-lacunary statistically convergent (or
strongly S (F')-convergent) to some [ € C provided that every € > 0

A (h“)fr {t €L :|A™G 1| = e}]) =

This is represented by ¢ — [(S§(A™, F)) or S (A™, F') —lim (; = l. The set of all sequences
Sy (A™, F)-convergent sequences is denoted as S (A™, F).

Theorem 2.10. For F = (f;), G = (g¢) and pg < pg, if 1nfutﬁ% > 0 and limy .o gtl(L’U«) >
0 for all ¢, then NJ*(A™, F) C S§*(A™,G).

Proof. Let ¢ € N)*(A™, F). Since ¢ =inf, g:ézg > 0 and hence qg;(u) < fi(u), we have

hmet |A™ ¢ — 1)) >qh’“ th A" — 1))

tel, tel,

_qhug th |A CtilD

tel,

1 m 1 m
= Z ge(|A Ct—”)‘f‘qW Z gt (A" G — 1)

tel, " tel,
[A™ 2z~ > € [A™z—| < €

1 m

2 47m ) ge(|A™ G = 1)
I

\Amzie I > ¢

huz ‘{t€I \Am@ - l| > 5}|gT(5)7

where g¢,(¢) = inficy, g¢(¢). If we make the necessary arrangements and take the limit as
r — oo of both sides, we obtain that ¢ € S§*(A™, G).

Corollary 2.11. If lim, o, 284 > 0 for all ¢ € N, then NJ*(A™, F) C S4*(A™, F).

N

Corollary 2.12. If infutf (u) > 0 and lim,_— fe(w)

e () =2 > (0 for all t € N, then Nj(A™ F) C
Sy(A™, G).

Corollary 2.13. If infwtﬂu"—) > 0, then N)(A™, F) C SY.

Theorem 2.14. Let F = (fi), G = (g¢) be sequences of modulus functions, 0 < u; <
e < 1, and 6 = (t,), ¥ = (s,) be lacunary sequences such that I, C J, for each r € N. If

SUp,, ¢ %Z < 00 and lim, s % =1, then lx N sy (A™, F) C N (A™,G).
P’/’OOf. Let I, = (trflatr]a Jr = (87«71, Sr]a hr =t —tr—1, Up = Sy — Sp_1, 0< M1 < U2 <1

and ¢ € log N sp* (A™, F). Hence for every ¢ > 0, we have

tim s € dp|ATG 1 2 2)) =
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Therefore, for a given p € N we can determine a natural number r, such that

p1 H1
Lt el |AmG 1] > <)) < 1—131-; (hi) < %pfr (h; ) _ 4, (h; )

for r > rg. Since f, are sequences modulus functions, we have

1
By
Then sy (A™, F) C si' and hence loo N sy (A™, F) C lo N sy’ Since lim,— oo oAz = 1 and
I. C J, for each r € N, we have lox N sj" (A™, F) C Nj*. Since sup,, gtiu) < oo we have
Ny? C Ny? (A™,G) . Hence loo N sy (A™, F) C Ny?(A™, G).
The inclusion I N sp* (A™, F) C Ni?(A™,G) is strict. If we take fi(u) = g¢(u) = u for
all t € N, we can easily seen from Example 3.3 in [25].

1
Hte Il : |A™G =1 > e} < >

Corollary 2.15. Let § = (¢,.), ¥ = (w,) be lacunary sequences and 1 < po. Then, the
following statements hold:

i) lo N sy (A™, F) C NP (A™, F),

ii) oo N 41 (A™, F) C N2 (A™, F),

iii) loo N sh" C N (A™, F).

Theorem 2.16. Lett 1 < p. If supysosup, ey fn(u) < 0o, then Sy(A™, F) C Nj(A™, F).

Proof. Suppose that supysosup,cy fn(u) < oo and T' = sup, . ,T(u) where T'(u) =
sup,cnfn(u). Let ¢ € SH(A™, F). Since Sj(A™,F) C Sj, we have limrﬂooh—l,ﬂ{t €l :
|A™( — 1| > e}| =0. In addition, we have

1 1 1
h—ﬁz:ft(mmft—”) =B > ft(\AmQ—l|)+h—¢f > RAmG—1)
tel, tel, tel,

[A™z—1| > € [A™Mz—l| < €

1 1
< WTHteIr CATG -1 > e+ WhrT'

If we take limit for r — oo, we have

) 1 m
lzmrﬂooh—w{t el |A™G =1 >¢€}|=0
ie, (€ N;(Am,F).
3. Conclusions

In this study, we have introduced and analyzed the concepts of strongly lacunary sum-
mable sequences and lacunary statistically convergent sequences, using sequences of modulus
functions. Throught this approach, we have established a set of inclusion theorems that serve
to compare these sequences, based on various parameters, the structure of lacunary sequences,
and the properties of sequences of modulus functions. Statistical convergence is a powerful
and widely used concept in applied mathematics. A sequence is typically considered statis-
tically convergent to a given point if, for the majority of its terms, the values approach this
point as closely as desired. The traditional method of statistical convergence can sometimes
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be too rigid or abrupt, especially in contexts where it is necessary to retain as many terms as
possible from the sequence. In these cases, the use of modulus functions provides a refined
approach to handling statistical convergence. By utilizing a sequence of modulus functions, it
is possible to retain terms without discarding them, even when they do not contribute signif-
icantly to the convergence. Moreover, this study introduces the concept of density functions
defined by sequences of unbounded modulus functions, in combination with a real number.
This allows for a more nuanced approach to statistical convergence, where instead of relying
on a single constant modulus function, a sequence of modulus functions is employed. As a
result, the number of terms that need to be excluded from the sequence is greatly reduced,
improving the overall accuracy of the convergence process. This refinement helps to enhance
both statistical convergence and summability methods, offering a more precise way to study
sequences that do not fit neatly into traditional frameworks. In addition to providing an
improved method for understanding convergence, this work also serves as a stepping stone
for future research. By selecting different sequences of modulus functions tailored to specific
applications, it may be possible to develop application-specific sequence spaces that better
reflect the underlying structures of various problems. For example, in fields such as signal
processing, data analysis, or numerical methods, the techniques introduced in this study can
be applied to develop more efficient algorithms and models. Ultimately, this paper offers
a deeper understanding of lacunary convergence and summability, while also presenting a
foundation for further exploration in these areas.
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Abstract

In this study, the concept of a ring, which is an algebraic structure, is combined with
rough set theory. Along with the definitions and theorems of rough rings, rough subrings and

rough ideals, rough quotient rings and homomorphisms of rough rings are introduced.
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1.INTRODUCTION

Rough set theory, discovered by Pawlak in 1982, is a useful set model for understanding unclear
information [1]. Rough set theory has been applied to most algebraic structures and successful
results have been obtained [2-8]. In addition to mathematics, it is also used in fields such as
medicine, data mining, artificial intelligence and machine learning [10-13]. In this section, the
basic properties of the rough set model are discussed. Also, the adaptation of rough set theory
to the concepts of group, ring and ideal is shown.

Definition 1.1 Let F is a universe (non-empty) set and 6 is an equivalence relation on F. The
set (F, 0) is said to be an approximation space. We denote the equivalence class of object a €
F by [a]g. Suppose (F, ) is an approximation space and S is a subset of F. The sets S =

{a€F:[algcS},S={a€F:[algnS+0},Bnd(S)=S— S are called upper
approximation, lower approximation, and boundary region of S, respectively. If Bnd(S) # @,
then S is rough set [1].

Definition 1.2 Let (F, 8) be an approximation space and * be a binary operationon F. A C F
is called a rough group if the following properties are satisfied:

DV 9€EA u+9€A
i)V 9,e €A, (u* 9) & =pu (9 * &) or associative property holds in A.
iii) Yu € A, such that 3e € A, u*e=ex*u=p, where e is called the rough unit

element of rough group A.

vE[I 9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye




iv)Vue A, 3p € A3 u*p = p*u= e, where p is said the rough inverse element of

u in A, we denote it by =t [7,8].

Theorem 1.1 If B is a rough subgroup of rough group A, the following properties are satisfied:
i)V0,9€B, 69 €B.

iiyV6 € B, 671 € B[7,8].

Definition 1.3 Let (G4,*) and (G, m) be two rough groups. If there exists a surjective function
@ : G; = G, such that (x *y) = @(x)m@(y) for Vx,y € G, , then ¢ is called a rough
group homomorphism and the rough groups G; and G, are called rough homomorphic groups.

Definition 1.4 Let R is a rough set. Define the operation in R as "@" and "@" are addition
and multiplication in R, respectively. Then, (R, @,&) triple is said to be a rough ring if all
condition below are satisfied:

i) (R, @) is a rough commutative group,

ii) (R, ®) is a rough semigroup or R satisfied associative property,

iii) For every 0,9, €R, then 6 Q (VP u) =0 QI POQRQuand 0 PIHR@Qu=0Q
p @9 & uholds in R [9].

Definition 1.5 Let R be rough ring and P € R. P is said to be a rough subring of R if P is a
rough ring with the same operation as R [9].

Theorem 1.2 Let B # @ is a rough subset of a rough ring R. B is called a rough subring of R
if and only if every by, b, € B the following condition is satisfied:

i) For Vby, b, € B, b, @ (—b,) € B,
ii) For Vb;,b, € B, b; ® b, € B [9].

Definition 1.6 Let (R,P,&Q) be aroughringand D # @ is rough subset of R. D is called rough
ideal of R if:

i)ForVd,, d, €D, d, ® (-d,) €D,
ii) ForVd € DandVr» ER, d @ r,7 @ d € D [9].

Definition 1.7 [9] Let (R,®,&Q) be arough ringand D S R. A subset D is said to be left-rough
ideal in R if

i)ForVd,,d, €D, d, ® (—d,) €D

ii)ForVd € Dand V7 € R, ® d € D.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye

237




A subset D is said to be right-rough ideal in R if
i)ForvVd, d, €D, d, ® (-d,) €D
ii)ForVd € Dand V7 € R, d @ » € D.

Example 1.1 Let F = Z,,. For every x4, x, € F, define an equivalence relation 8 = x; — x, =
2k, k € R. Then, the equivalence class of F is

D— D # @, D is rough set. Now let's show that D is a rough ideal.

i)ForVd,,d, €D,d, ® (-d,) €D

ii) ForVd € DandV» ER, A @ 7,7 @ d € D.

Since conditions i) and ii) above are hold, it is clear that D is the rough ideal of R.

2.ROUGH QUOTIENT RINGS
In this section, we study rough quotient rings using rough rings and rough ideals.

Theorem 2.1 If R is a rough ring and D is a rough ideal of R and 6,9 € R, the relation -~
defined as

-9 = 0D (—9)€ED

is an equivalence relation with respect to binary operations on R. The equivalence classes
obtained by this relation are right and left cosets. The set of equivalence classes is denoted by

R/D={0DD: 0€ R}
Theorem 2.2 Let R be a rough ring and D be a rough ideal of R. ForV8 @ D, 9D D €
R/D
(0PD)DPODD)=0OBNDD

(6DD)RWHD)=(0QNDD

the structure (R/D,P,&) defined by addition and multiplication operations is a rough ring.
Proof. 1) Let us show that the structure (R/D,) is a commutative rough group. For V 6 &

D,IDDuDDE R/D,itisdefinedby R/D={0HD: 6 € R}.
i) Since R is a rough ring, (9 @ 5) @ (19 @ 5) =0DIDDER/D.
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it) The associative property is provided for m
iii) There exists (0 D D) € R/D such that (6 D D) D (0D D)= (0D DD = (6 D
D).
iv) There exists ((~6) @ D) € R/D such that (6 © D) @ ((-6) D) = (0 ® D).
N(OEBD)PWED)=0PNDD

=W DO DD ER/D.
Therefore, the structure (R/D,D) is a commutative rough group.

2) Let us show that the associative property of the structure (R/D,Q ) is also satisfied in R/D.

Since R is a rough ring,
0ED)R[VED)R DD =(00D)QRWRW BD
=0®IQW DD
=[(RNQuUOD=0RNODR (1D D)
=[(60D)QWDD)| R (LD D)€ R/D.

3) Let us show that the left and right distributive properties of the operation & on the operation
@ are also satisfied in R/D.

Since R is a rough ring,
oD [EeD)OueD)]=[(?eD) ®D)|&[(¢®D) S (1)
=[(6 Q9 DD D[V ®w B D] € R/D.

Thus, multiplication is distributive from the left over addition. Similarly, multiplication is
distributive from the right over addition.

Therefore, the structure (R/D,P,&) is a rough ring.

Remark 2.1 If the rough ring R is commutative and has identity, then the rough ring R /D is
also commutative and a rough ring with identity for R # D.

Proof Forv 6 @ 5,19 695 € R/D, since R is a rough ring
O6PD)RWHD)=0RINDD

=R DD €R/D. Then, the rough ring (R/D,D,Q) is
commutative.
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Let R # D and let the identity of the rough ring R be 1 with respect to multiplication. For
VODD € R/D, since 0 DD)Q(1DD)=(1PD)Q(0DD)=0QR1DD=
(9 @ 5) is a identity element. Thus, the rough ring (R/D,P,&) has identity.

Definition 2.1 Let R be a rough ring and D be a rough ideal of R. The rough ring (R/D,D,X)
is called a rough quotient ring.

{0,1,4} < R rough ideal, R/D = {0 @ D} and R/D = {0 ® D}. Thus,
1) (R/D,P) is a commutative rough group.

2) The structure (R/D,Q) satisfies the associative property in R/D.
3) The left and right distributive properties of the operation @ on the operation € are also

satisfied in R/D.

3.HOMOMORPHISMS OF ROUGH RINGS

In this section, homomorphisms, properties and theorems of rough rings are given using
homomorphisms of rough groups.

Definition 3.1 For rough rings (R,,P,&) and (R,,P,&), the surjective map ¢ : R_l - iR_z is
called a rough ring homomorphism on ¢ if the following conditions are satisfied.

i)ForvV 6,9 € Ry, (6 ® ) = ¢(8) ® 0(®).
i) ForVO,9 €R,, 00 ®9) = p(0) @ p(9).

Since ¢ : R; = R, is a rough ring homomorphism surjective map, R, is called a
homomorphic image of R;.

Definition 3.2 If the rough ring homomorphism ¢ : R, — R, is a injective map, then ¢ is
called a rough ring isomorphism. Also, the rough rings R; and R, are said to be isomorphic
and are denoted by R, = R,.

Theorem 3.1 If ¢ : R, - R, is rough ring homomorphism, then
l) g0(01‘?1) = ORZ
ii)ForV 0 € Ry, p(-0) = — ¢@(6).

Proof i) ¢(0z,) = ¢(0g,) @ Og,

(P(ORl) D <P(OR1) D (—¢(OR1))

= ¢(0z, @ 0z,) ® (—¢(0z,))
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= (p(OR1) D (_(p(OR1)) = ORZ'
ii)ForV 6 € Ry, 9(8) ® ¢(-6) = ¢(6 D (-6))

= (p(0R1) = ORz‘

Since (R,,D) is a rough group and the inverse of an element in a rough group is unique, we
obtain @ (-0) = — @(0).

Theorem 3.2 Let ¢ : R; — R, be a rough ring homomorphism.
i) If R, is a commutative rough ring, then R, is also a commutative rough ring.

(i) If R, is a unitary rough ring with unit 1 , then R, is a unitary rough ring with unit 15, and
(p(1R1) = 1Rz'

iii) If R, is a rough ring with unity and @ € R, has a multiplicative inverse in R,, then ¢ (6)
also has a multiplicative inverse in R, and @ (871) = [¢(8)] 1.

Proof i) Let R; be a commutative rough ring. Since ¢ : R; - R, is a rough ring
homomorphism,

For Va € R,, there exists § € R, such that ¢(0) = a.

For VB € R,, there exists 9 € R, such that () = .

a®@ B=pO)R ) =0 ORI =9 RBO) =p®) Q) = B Q a is obtained.
Thus, the rough ring R, is commutative.

ii) Let R, be a unitary rough ring with unit 1, . Since ¢ is a rough ring homomorphism, for

Va € R,, there exists 0 € R, such that ¢ (8) = a.
<P(1R1) QR a= <.0(1R1) R p(0) = qo(lR1 ® 0) = p(6) = a is obtained.
Likewise, @ ® (p(lRl) =) QK <p(1R1) = (6 ® 1R1) = ¢(0) = a.

Since <p(1R1) RKRa=a® (p(lRl) for Va € R, go(lRl) is the unit for the rough ring R,
and since there is only one unit element in the rough ring, (p(l R 1) = 1, is obtained for the unit
element 15, of R,.

iii) Let R, be a rough ring with unity and let 6~ € R, be for 6 € R;.
(p(lRl) =00 Q0671 =¢(0) @ p(67') =1, and

o(1g,) = (071 ®0) = (6™ ® 9(6) = 1, is obtained.
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Hence, since @(8) @ ¢(07) = p(07") @ 9(8) = 1, , the inverse of ¢(8) becomes
p(67h).

Also, since the inverse of @(8) is given by [@(8)] 1, we have @(071) = [p(8)]71.

Theorem 3.3 If R is a rough ring and 0 # 6 € R; the map defined as @g: R —» R ,9 =
@e(9) = 0 QI is injective if and only if the element 6 is not a zero divisor of the rough ring
R.

Proof Let R be arough ringandlet 0 # 6 € R.

(=:)Let the map g be injective. For V9, u € R, if pg(9) = @g(u), then 9 = p.
Pe(¥) = (W) = QI =0Qnu

= 0RNO-ORW=0QwD -0

= 6(9 @ —p) = 0 is written.

Since ¥ = pu, we obtain 9 @ —u = 0. Thus, it can be seen that the element 6 is not a zero
divisor of the rough ring R.

(&) Suppose that the element 6 is not a zero divisor of the rough ring R.
Pe(9) = @o() = 6QI=0Qu

=S (0RNO-RW=0OWS -0

= 0(9 @ —u) = 0 is written.

9P —-u=0

= J = u is obtained.
Thus, it can be seen that ¢y is injective map.
Definition 3.3 Let ¢ : R, — R, be a rough ring homomorphism. The set

Kerp ={6 € Ry @(0) = ORz}
is called the kernel of ¢ and the set
Img ={¢(0): 6 € Ry}

is called the image of ¢.

Theorem 3.4 If ¢ : R, = R, is a rough ring homomorphism, then Kerg is a rough ideal of
R;.

WV 9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye




Proof If ¢ : R, = R, is a rough ring homomorphism, then it is clear that (p(OR 1) = Op

.-
From Definition 3.3 we obtain Og, € Kerg and Kerg # @. Let us now show that Kerg is a
rough ideal of R;.

) IfVd,,d, € Kerg, then ¢(d;) = Og, and ¢(d;) = Og,.
p(d, @D —dy) = o(dy) © —p(d,)
= Og, @ —0g, = Og,is obtained. Thus, it is seen that (¢, © —d,) € Kere.

ii) If vd € Kerg, then ¢(d) = 0g,. For V» €ER, p(rd) = p(r) ® p(d) = p(r) ®
Og, = Og, is obtained. Thus, it is seen that d € Kerg .

Likewise, p(dr) = ¢(d) ® @(r) = 0, @ @(r) = O, is obtained. Thus, it is seen that
dr € Kerg .

Hence, Kerg is a rough ideal of R;.

Theorem 3.5 Let R be a rough ring and D be a rough ideal of R. In this case, the map defined
by

Q:R->R/D, 7o) =rOD
is a rough ring homomorphism with kernel D.

Proof For » @ D € R/D , there exists » € R such that o(r)=r @ D. Thus, @ is

surjective.
ForVO,uER, o0 DI =0 PN DPD=(0DD)D (VD D) =00 @) and
PORN=0QRINO®D=(00D)R® (Y DD) =90 ® @) is obtained.
Thus, ¢ is a rough ring homomorphism. It seen that,
Kerog={r eR: ¢(») =0 D}
={reR: »r ®D="2}
={reR: red}="2.
4.CONCLUSIONS

In this study, rough quotient rings and homomorphisms of rough rings are studied using the
concepts of rough rings and rough ideals. It is thought that by using this information, theorems
of isomorphisms of rough rings and transformations between rough fields and rough fields can
be defined.
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Abstract

Soft set theory has brought a new perspective to contemporary mathematics. In this
way, new analyzes have been developed regarding the complex structure of contemporary
problems that are incomplete and uncertain. The concept of covering space corresponds to the
concept of groupoid, which is an algebraic structure, and due to this feature, it has found a
wide field of study in topology In this study, the concept of soft set and the concept of fibre,
which finds a place in covering spaces, are discussed together and various concepts such as
soft quotient map, soft fibre, and soft fibre groupoid, each of which are original concepts, are

introduced.

Keywords: Soft set, Soft groupoid, Soft quotient map, Concept of fibre, Concept of soft fibre.

1.INTRODUCTION

Complex and uncertain problems in modern life have entered the fields of study of both
thinkers and scientists dealing with mathematics and logic. Classical methods of mathematics
have been inadequate to solve some uncertainty problems of the modern age. In order to
overcome this situation, various set theories, starting with G. Cantor, have added a new
perspective to mathematics, produced themselves in a new language and offered new and

practical solutions to problems related to uncertainty situations.

D. A. Molodtsov put forward the "Soft set" theory in 1999, which gave a new perspective to
the concepts of completeness and precision in mathematics [1]. This theory proposes more

specific and easier to classify solutions by parameterizing some incomplete and imprecise
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concepts encountered in practical life. After soft set theory was introduced, it was studied by

many mathematicians from topological, categorical and algebraic perspectives [2-16].

The concept of covering space is remarkable in many respects. First of all, this concept allows
obtaining the X space, which has a simpler structure than a given X space. More importantly,
this concept corresponds to the concept of groupoid, which is an algebraic structure, and due

to this feature, it has found a wide field of study in topology. [17-22].

In this study, the concept of soft set and the concept of fibre, which finds a place in covering
spaces, are discussed together and various concepts such as soft quotient map, soft fibre, and

soft fibre groupoid, each of which are original concepts, are introduced.

2. SOFT SETS

Soft set theory defined by D.A. Molodtsov has found a wide place in contemporary
mathematics. After the introduction of soft set theory, which gave a new perspective to the
concepts of completeness and precision in mathematics, it was studied by many

mathematicians from topological, categorical and algebraic perspectives. [2-16].

Let the set of all subsets of X be P(X) and A c E, where X is a universal set and E is the

set of parameters. Thus, the definition of a soft set is given as follows.

Definition 2.1. The pair (F, A) given with any F : A— P(X) transformation is called a soft
set on X [1]. For the above definition, it can be said that a soft set on X is a parameterized
family of subsets of the universal set X. For 8 € A, the F(8 ) family can be defined as a set of
o approximation elements of the soft set (F,A) [1]. Here, for convenience, a soft set (F,A)

on X will sometimes be denoted by (X, F, 4).

Example 2.1. Let the universal set X be the set of shoes. Also, let the set of £ parameters be
defined as E = {summer, seasonal, winter, beautiful, comfortable, bright, colorful,
expensive, cheap}. In this case, a soft set to be defined; will indicate shoes such as summerly
shoes, seasonal shoes, winterly shoes, beautiful shoes, ... etc.

Suppose there are six shoes in the universal set X = {h,,h,, h3, hy, hs, hg}.

For the parameter set A = {eq, e,, e3, €4, €5},
e, parameter is 'summer’,
e, parameter is ‘winter’,

e; parameter is ‘expensive’,
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e, parameter is ‘beautiful’,

es parameter is ‘comfortable’ and
F(e;) ={ hi}

F(ez) ={ hy hy}

F (e3) ={ hy, hs, hs}

F (es) ={ hy,hy,h3, hy, hs}

F (es) ={hy,h3, hs, he}

be defines as. Here;

F(e;) = {hy} summer shoes,

F(e;) = {h, h,} winter shoes,

F(e3) = {h; hs hs} expensive shoes,

F (ey) = { hy, hy, h3, hy, hs} beautiful shoes,
F (es) = {h,, hs3, hs, hg} comfortable shoes.

Accordingly, the soft set (F, A) is a parameterized {F(e;),1=1, 2, 3, 4, 5} family of subsets

of the universal set X.

Thus, the (F, A) soft set becomes (F,A) = {Summer shoes = {h;}, winter shoes = { h, h,},
expensive shoes = {h, h3 hs}, beautiful shoes = {h, h;, hs, hy, hs}, comfortable shoes =

{h2, h3, hs, he}}.

Definition 2.2. For two soft sets (F,A) and (H, B) over a common universe X, we say that

(H, B) is a soft subset of (F, A) if

i. B c A.

ii. V6O € B, H(0) and F(6) are identical approximations.
We write (H,B) € (F,A)[2].

3. SOFT GROUPOIDS

Definition 3.1. Let H be a groupoid and A the set of parameters, and let the family of all
subgroupoids of this groupoid be denoted by P(H). If the set F(8) is a subgroupoid of H with
the F:A —» P(H) transformation for every 8 € A, the (F,A) pair is called a soft

groupoid on H [23].
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Definition 3.2. Let (H,F,A) and (G,F',B) be two soft groupoids, g:A —» B is a
surjective morphism and R: H —» G is a functor. If the following conditions exist, the
(R, g) pair is called a soft groupoid homomorphism:

i. R functor is full,

ii. Forevery 0 € A, R (F(0)) = F'(g(6))[23].

Definition 3.3. Let (H,F,A) and (G,F',B) be two soft groupoids. If for B € A and every
6 € B, the groupoid F'(0) is a subgroupoid of F(8), (G,F’, B) is called a soft subgroupoid
of (H, F, A) [23].

Definition 3.4. Let (G, F’', B) be a soft subgroupoid of the soft groupoid (H, F, A). In this case,
foreach 8 € B,

i If the groupoid F'(0) is a full subgroupoid of F(0), (G,F’, B) is called a full soft
subgroupoid of (H, F, A).

ii. If the groupoid F'(0) is a wide subgroupoid of F(8), (G,F', B) is called a wide
soft subgroupoid of (H, F, A).

iii. If the groupoid F'(0) is a normal subgroupoid of F(0), (G,F',B) is called a
normal soft subgroupoid of (H, F, A) [23].

Definition 3.5. Let (G, F', B) be a soft subgroupoid of the soft groupoid (H, F, A), where
(G, F', B) is totally disconnected. In this case, if the F(6)/F'(8) structure is a quotient
groupoid for each 8 € B, with the structure transformations reduced from the H/G quotient
groupoid and the transformation defined as,
F":B —» P(H/G)
6 —» F"(6) =F(6)/F'(6)

the (H/G, F", B) structure is called a soft quotient groupoid [23].

4. THE SOFT FIBRE OF GROUPOIDS

In this section, the concept of fibre was first examined, then the concept of soft set and the
concept of fibre that found a place in covering spaces were discussed together, and various
concepts such as soft quotient map, soft fibre, and soft fibre groupoid, each of which are

original concepts, were defined.
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Definition 4.1. Let ¢: H— G be a morphism of groupoids. A morphism ¢: H —» G is
faithfull (resp full) if the restrictions of ¢ mapping H(x,y) —» G(¢@(x), ¢(y)) are injective
(resp surjective) for all objects x, y of H [24].

Definition 4.2. Let ¢: H —» G be a morphism of groupoids. The fibre of ¢ at an object y of
G is the suhgroupoid of H whose elements are mapped by ¢ to the identity at y; this fibre is
written ¢ ~1(y). Clearly the kernel of ¢, ker ¢, is the sum (or disjoint union, as it is also

called) of the fibres ¢ ~1(y) for all objects y of G [24].

Definition 4.3. Let ¢ : H—» G be a soft groupoid homomorphism. Im ¢ is the set of
elements @(a) for a € H. Let the structure (H/G,F", B) be a soft quotient groupoid as given
in Definition 3.5. The p: H — H /G projection is the soft homomorphism of soft groupoids

that is universal for homomorphisms from H to ¢ such that Im ¢ is disjoint.

Any such universal soft homomorphism of the form p, which must be followed by a soft

isomorphism, is called a soft quotient map.

Definition 4.4. Let ¢ : H —» G be a soft groupoid homomorphism. The soft fibre of ¢ at
an object y of G is the subgroupoid of H whose elements are mapped by ¢ to the identity at y;
this soft fibre is written S~ (y).

Clearly the kernel of @, ker, is corresponds to the soft fibre S¢~1(y) for all objects y of G,

and kerg is also called the disjoint union of fibres ¢ ~1(y) and can be shown as follows:

kerg = {p~'(y) : y € 0b(G)} =U, conie) {97 (¥)}

Hf ') \ " / \
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Definition 4.5. Let ¢ : H— G be a soft groupoid homomorphism. The fibre of G in an
object y is ¢~ 1(y), for Vy € 0b(G);

F : 0b(G) —> P(H)
y= FO)=¢ 'y <H

is a soft groupoid.

This soft groupoid is called soft fibre groupoid and is denoted by (H, F, Ob(G)).

H/ 6D ) " / \

a _— y
b " >
13’

- J T\ )

A

0b(G) __F___, P(H)

ye F)=¢ ') <H

Explanation 4.1. Let ¢ : H —» G be a soft groupoid homomorphism as given above.
Let us show that ¢ "' (y) < H for V y € 0b(G):

Since ¢ is a soft groupoid homomorphism and defined as ¢ ™' (y) = {a € H : ¢(a) = 1,},

we can write the following:
i. ForVa,b € 7' (y), p(a*b) = p(a)o p(b) =1, 01, =1,,.
Then a=b € ¢~ 1(y).
i. Forva€eo '), e =(p@) ™ =(1)"=1,.

Thena™ € p71(y).

As aresult, " 1(y) < H.
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Proposition 4.1. Let ¢: H —» G be a soft groupoid homomorphism, where (G, F', 0b(G)) is
a wide soft subgroupoid of the soft groupoid (H, F,0b(H)). In this case, (H,F, 0b(G)) soft
fibre groupoid is a normal soft subgroupoid of (H, F,0b(H)).

Proof. First, let's show that (H, F,0b(G)) < (H,F,0b(H)):

i. Since G is a wide soft subgroupoid of H, Ob(G) S Ob(H).
ii. For the soft groupoid (H, F, Ob(H)), let the F transformation be defined as
follows:

F: Ob(H) —» P(H)
y » F(y)=kerp<H

In this case, F(y) = ¢ 2 (y) ={a € H: ¢(a) = 1,} < kerp = F(y), forevery y €

0b(G). We showed that the groupoid F () is an wide subgroupoid of F(y).

Moreover, since there will be f~1 x @~ 1(y){b} * f = ¢ 1(y){a}, forevery a,b € F(y) =
kere and f € mor(a, b), the groupoid F(y) is a normal subgroupoid of F(y).

Then (H, F, 0b(G)) soft fibre groupoid is a normal soft subgroupoid of (H, F, Ob(H)).

We showed above that kerg is a normal soft subgroupoid of H. Accordingly, we can write the

following diagram:

k(o) q(¢)

H/kerg
For a general ¢ soft homomorphism, the kernel of q(¢) consists of only identities. In this

case, q(¢) is said to have a soft discrete kernel.

Definition 4.6. Let (H,F,A)and (G,F’,B) be soft groupoids and ¢ : H —» G be a soft

groupoid homomorphism.
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1) If the constraints on the mapping H(x,y) —» G(@(x),@(y)) forV x,y € H are
surjective, @ is said to be soft full. Here, since the ¢ transformation is surjective by

definition, it is soft full without any other conditions.

2) If the constraints on the mapping H(x,y) — G(¢(x),@(y)) for V x,y € H are
injective, @ is said to be soft faithfull.

5.CONCLUSIONS

In this study, the concept of soft set and the concept of fibre, which finds a place in covering
spaces, are discussed together and various concepts such as soft quotient map, soft fibre, and
soft fibre groupoid, each of which are original concepts, are introduced. In addition, these

concepts have been made more understandable with proposition, explanation and figures.

REFERENCES

1. D.A. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (4-5), 19-31, 1999.

2. P. K. Maji, R. Biswas and R. Roy, Soft set theory, Comput. Math. Appl., 45(4-5), 555-562,
2003.

3. M. L. Ali, 4 note on soft sets, rough soft sets and fuzzy soft sets, Appl.Soft Comput., 11,
3329-3332,2011.

4. H. Aktas and N. Cagman, Soft sets and soft groups, Inform.Sci., 77(13), 2726-2735, 2007.

5. A. O. Atagun, A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math.
Apply., 61, 592-601, 2011.

6. M. Shabir, M. Naz, On Soft topological spaces, Comput. Math. Apply., 61(7), 1786-1799,
2011.

7. W. K. Min, 4 Note on Soft Topological Spaces, Comput. Math. Apply., 62, 3524-3528,
2011.

8. N. Cagman, S. Karatas and S. Enginoglu, Soft topology, Comput. Math. Apply., 62(1), 351-
358, 2011.

9. A. Aygunoglu, A. Aygun, Some notes on soft topological spaces, Neural Comput. Apply.,
22(1), 113-119, 2012.

10. O. Zahiri, Category of soft sets, An. Univ. Craiova Ser. Mat. Inform., 40(2), 154-166,
2013.

11. T. Shah, S. Shaheen, Soft topological groups and rings, Ann. Fuzzy Math. Inform., 7(5),
725-743, 2014.

visyA 9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye




12. D. Pie and D. Miao, From soft sets to information systems. In: X. Hu, Q. Liu, A. Skowron,
T.Y. Lin, R.R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, Vol.2, IEEE.,
pp. 617-621, 2005.

13. S. K. Sardar, S. Gupta, Soft category theory-an introduction, J. Hyperstructures, 2, 118-
135,2013.

14. G. Oguz, M. H. Gursoy and 1. Icen, On Soft Topological Categories, Hacet. J. Math. Stat.,
2018.

15. G. Oguz, 1. Icen, and M. H. Gursoy, Actions of Soft Groups, Commun. Fac. Sci. Univ.
Ank. Ser. A1 Math. Stat. Volume 68, number 1, Pages 1163-1174, 2019.

16. S. Gecen, Reflections of global action on soft set theory, master’s thesis Indnii University,
Malatya, Tiirkiye, 2021.

17. P. J. Higgins, Categories and groupoids, Van Nostrand, New York, 1971.

18. R. Brown, Topology: A geometric account of general topology, homotopy types and the
fundamental groupoid, Ellis Horwood, Chichester, 1988.

19. R. Brown, G. Danesh-Naruie and J. P. L. Hardy, Topological groupoids II: Covering
morphism and G-spaces, Math. Nachr., 74, 143-145, 1976.

20. O. Mucuk, Covering groups of non-connected topological groups and the monodromy
groupoid of a topological groupoid, Ph. D. Thesis, University of Whales, England, 1993.

21. O. Mucuk and L. Icen, Covering of Groupoids, Hadronic J. Suppl., 16, no.2, 183-196,
2001.

22. J. P. Hardy, Topological groupoids: Coverings and Univeral Constructions, Ph. D.
Thesis, University College of North Wales, 1974.

23. G. Oguz, Soft approach to some algebraic structures, indnii University, Ph.D. Thesis,
Malatya, Tiirkiye, 2018.

24. R. Brown, Fibrations of Groupoids, Journal of Algebra, 15, 103-132, 1970.

9" International Conference on Computational Mathematics and Engineering Sciences
17 — 19 May 2025, Diyarbakir — Turkiye

PAK]



O

9™ INTERNATIONAL
CONFERENCE ON
COMPUTATIONAL
MATHEMATICS AND

ENGINEERING SCIENCES
17 =19 May 2025,
Diyarbakir — Turkiye

cmescongress.org



